Rudjer Boskovic Institute Division of electronics Laboratory for information systems

Ivan Marić

GMDH: building self-organizing feedforward perceptron-like polynomial models for real-time applications

GMDH: feedforward polynomial structure

Low-order polynomial $p = a_0 + a_1 z_i + a_2 z_j + a_3 z_i^2 + a_4 z_j^2 + a_5 z_i z_j$ where z_i and z_j can be any variable from lower layers e.g.: $p_2 = p_2(x_2, x_3)$ $p_4 = p_4(p_2, x_4)$ Real system: $y = f(x_1, x_2, x_3, x_4)$ GMDH approximation in recursive form: $p_5 \approx y$ $p_5 = p_5(p_3(p_1(x_1, x_2), p_2(x_2, x_3)), p_4(p_2(x_2, x_3), x_4))$

Kolmogorov-Gabor polynomial $P = a_0 + \sum_{i=1}^{N} a_i x_i + \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j x_i x_j + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} a_i a_j a_k x_i x_j xk + \dots$

GMDH algorithm (Polynomial theory of complex systems,IEEE Sys. Man Cyber., Ivakhnenko 1971)

Illustration of GMDH algorithm complexity: Total number of polynomials for 9 input variables

	No limitations on to retained polyno	the total number of omials per layer	Maximum 50 polynomial retained per layer		
	Total number of input variables	Total number of possible polynomials	Total number of input variables	Total number of polynomials	
Layer 1	9	36	9	36	
Layer 2	45	990	45	990	
Layer 3	1035	535095	95	4465	
Layer 4	536130	143717420385	145	10440	
Layer 5	143717956515	1.03274255123e+22	195	18915	
Layer 6	1.03274255124e+22	5.33278588580e+43	245	29890	
Layer 7	5.33278588580e+43	1.42193026519e+87	295	43365	

Polynomial regression

Learning data set used for polynomial regression

$$\{x_{1i}^{L}, x_{2i}^{L}, ..., x_{Ki}^{L}, y_{i}^{L}\}; i = 1, ..., M$$

Low order polynomial

$$p = a_0 + a_1 z_i + a_2 z_j + a_3 z_i^2 + a_4 z_j^2 + a_5 z_i z_j$$

Set of 6 simultaneous linear equations

$$\frac{\partial}{\partial a_k} \left(\sum_{m=1}^{M} \left(y_m^L - a_0 - a_1 z_{i,m}^L - a_2 z_{j,m}^L - a_3 z_{i,m}^{L^2} - a_4 z_{j,m}^{L^2} - a_5 z_{i,m}^{L} z_{j,m}^{L} \right)^2 \right) = 0$$

k = 0,...,5

Set of 6 simultaneous linear equations

$$\sum_{m=1}^{M} \left(a_{0} + a_{1} z_{i,m}^{L} + a_{2} z_{j,m}^{L} + a_{3} z_{i,m}^{L^{2}} + a_{4} z_{j,m}^{L^{2}} + a_{5} z_{i,m}^{L} z_{j,m}^{L} - y_{m} \right) = 0$$

$$\sum_{m=1}^{M} z_{i,m}^{L} \left(a_{0} + a_{1} z_{i,m}^{L} + a_{2} z_{j,m}^{L} + a_{3} z_{i,m}^{L^{2}} + a_{4} z_{j,m}^{L^{2}} + a_{5} z_{i,m}^{L} z_{j,m}^{L} - y_{m} \right) = 0$$

$$\sum_{m=1}^{M} z_{j,m}^{L} \left(a_{0} + a_{1} z_{i,m}^{L} + a_{2} z_{j,m}^{L} + a_{3} z_{i,m}^{L^{2}} + a_{4} z_{j,m}^{L^{2}} + a_{5} z_{i,m}^{L} z_{j,m}^{L} - y_{m} \right) = 0$$

$$\sum_{m=1}^{M} z_{i,m}^{L^{2}} \left(a_{0} + a_{1} z_{i,m}^{L} + a_{2} z_{j,m}^{L} + a_{3} z_{i,m}^{L^{2}} + a_{4} z_{j,m}^{L^{2}} + a_{5} z_{i,m}^{L} z_{j,m}^{L} - y_{m} \right) = 0$$

$$\sum_{m=1}^{M} z_{i,m}^{L^{2}} \left(a_{0} + a_{1} z_{i,m}^{L} + a_{2} z_{j,m}^{L} + a_{3} z_{i,m}^{L^{2}} + a_{4} z_{j,m}^{L^{2}} + a_{5} z_{i,m}^{L} z_{j,m}^{L} - y_{m} \right) = 0$$

$$\sum_{m=1}^{M} z_{i,m}^{L} z_{j,m}^{L} \left(a_{0} + a_{1} z_{i,m}^{L} + a_{2} z_{j,m}^{L} + a_{3} z_{i,m}^{L^{2}} + a_{4} z_{j,m}^{L^{2}} + a_{5} z_{i,m}^{L} z_{j,m}^{L} - y_{m} \right) = 0$$

Best model selection

Test data are used for the selection of the best models $\{x_{1i}^T, x_{2i}^T, ..., x_{Ki}^T, y_i^T\}, j = 1, ..., N$

BEST MODEL SELECTION CRITERIA

- E_{ls} : Least Square Error Measure
- *E_{rrs}*: Root Relative Squared Error Measure
- E_{CE} : Compound Squared Relative Error Measure

$$E_{ls} = \sum_{i=1}^{N} \left(p_i^T - y_i^T \right)^2$$

$$E_{rrs} = \sqrt{\frac{\sum_{i=1}^{N} (p_i^T - y_i^T)^2}{\sum_{i=1}^{N} (y_i^T - \overline{y})^2}}$$

$$E_{CE} = c_w \left(\frac{E_{rrs}}{E_{rrs0}} \right)^2 + (1 - c_w) \left(\frac{T_{exe}}{T_{exe0}} \right)^2$$

$$T_{exe} - \text{model execution time}$$

$$0 \le c_w \le 1 - \text{weighting coefficient}$$

$$E_{rrs0}, T_{exe0} - \text{thresholds}$$

The approximation error and the execution time when using the LS or RRS error criterion for model selection

The approximation error and the execution time when using the compound error criterion for model selection

An example of a GMDH polynomial model obtained when using RRS error mesure for the selection of the best candidate models

y=P9(P3(P1(P0(x4,x5),x3),P2(x2,x5)),P8(P6(P4(x1,x3),P5(x0,x5)),P7(x1,x2)))

GMDH polynomial equation in recursive form

 $P = P_9(P_3(P_1(P_0(x_4, x_5), x_3), P_2(x_2, x_5)), P_8(P_6(P_4(x_1, x_3), P_5(x_0, x_5)), P_7(x_1, x_2)))$ $P_i = a_0 + a_1 x_j + a_2 x_k + a_3 x_j^2 + a_4 x_k^2 + a_5 x_j x_k$

i	aO	al	a2	a3	a4	a5
0	-1.3735E+01	1.1914E+01	5.4858E-01	5.4678E+00	-2.9526E-03	-3.5912E-01
1	8.1678E+00	2.8764E+00	-5.2126E-02	1.9260E-02	8.6716E-05	-6.8152E-03
2	2.4070E+00	-1.0205E-01	1.2623E-01	-7.9747E-03	-1.8498E-03	1.5925E-03
3	3.7246E+00	-8.7866E-01	-1.0388E+00	4.3489E-03	2.5581E-02	4.7307E-01
4	1.9692E+01	-4.6700E+00	-7.8230E-02	-4.2119E+01	8.5175E-05	1.8046E-02
5	9.7814E+00	-1.7134E+01	-4.0561E-01	1.2834E+01	6.4154E-03	6.4112E-01
6	2.2563E+00	-2.4485E-01	-9.0911E-01	8.2653E-04	8.5049E-02	3.1820E-01
7	4.5270E+00	1.8325E+00	-4.0275E-02	-3.8016E+01	-7.9662E-03	-1.0699E-01
8	3.2241E+00	-7.2378E-01	-9.2336E-01	-7.5029E-03	1.8362E-02	4.5607E-01
9	7.9213E-02	1.0500E-01	8.4703E-01	1.6364E-01	7.6373E-02	-2.3335E-01

Compensation of natural gas flow-rate error due to temperature drop effect

Flow-rate correction factor modeling

Input parameters (26): $x_1, x_2, ..., x_{21}, p_u, T_d, \Delta p, D, d$

PREPROCESSING

- Random generation of learning set (20000 samples)
- Random generation of test set (20000 samples)
- Reduction of input parameters (exp. knowledge): 26 to 13

$$x_{CO_2}, x_{H2}, p_u, T_d, \rho_{r_d}, H_s, \rho_d, \gamma, \kappa, \Delta p, D, d, \beta$$

- Sorting the parameters in order of significance
- Determination of optimal input parameters (9 out of 13):

$$x_{CO_2}, x_{H2}, p_u, T_d, \Delta p, \rho_d, \rho_{r_d}, H_s, \beta$$

MODELING

- Maximum execution time of low order polynomial: 1ms
- Execution time of the flow-rate correction: ≤50ms
- RRSE of the flow-rate correction factor: $\leq 4\%$
- Total number of layers: ≤ 15
- Total number of retained polynomials per layer: $\leq 25, \leq 50, \leq 75, \leq 100$
- Model selection criterion: CE ($c_w = 0, 0.1, 0.2, ..., 1.0$)

Average RRSE of the best 10 polynomial models from each layer related to the single input variable, as the result of its exclusion from the set

Average CE for the 10 best models obtained at layer 15

Average RRSE for the 10 best models obtained at layer 15

The best GMDH surrogate of the flow-rate correction factor Kq, satisfying the prespecified conditions, is obtained at layer 15 by using the CE measure (c_w =0.5, RRSE=3.967%, ET=37ms)

The best GMDH surrogate model of the flow-rate correction factor, obtained at layer 15 by using the CE measure (c_w =1.0, RRSE=3.915%, ET=197ms), fails to satisfy the prespecified conditions

Illustration of relative error in the measurement of a natural gas flow-rate by orifice plates with corner taps when ignoring the temperature drop effect (no correction)

Illustration of relative error in the measurement of a natural gas flow-rate, when using the GMDH polynomial for the correction of the temperature drop effect

Modeling natural gas properties

• Input parameters (6):

 $p, T, H_{s}, \rho, x_{co2}, x_{H2}$

- PREPROCESSING
- Random generation of learning set (20000 samples)
- Random generation of test set (20000 samples)
- MODELING
- Maximum execution time of low order polynomial: 1ms
- Execution time of the flow-rate correction: \leq 50ms
- RRSE of the flow-rate correction factor: $\leq 3\%$
- Total number of layers: ≤ 15
- Total number of retained polynomials per layer: $\leq 25, \leq 50, \leq 75, \leq 100$
- Model selection criterion: CE (*cw*=0, 0.1, 0.2,..., 1.0)

The best GMDH model of JT coefficient, satisfying the prespecified conditions, is obtained at layer 13 by using the CE measure for model selection (c_w =0.5, RRSE=2.493%, ET=41ms)

Illustration of relative error of JT coefficient due to its approximation by GMDH model

The best GMDH model of molar heat capacity, satisfying the prespecified conditions, is obtained at layer 13 by using the CE measure for model selection (c_w =0.5, RRSE=2.995%, ET=47ms)

L=13, D=0, Ecomp=1.217E+0, Ermsq=1.815E-1, Emax=2.4941, Errs=2.995%, Era=2.605%, Texe=47.000ms

Illustration of relative error of molar heat capacity due to its approximation by GMDH model

The best GMDH model of isentropic exponent, satisfying the prespecified conditions, is obtained at layer 14 by using the CE measure for model selection (c_w =0.5, RRSE=2.996%, ET=33ms)

L=14, D=0, Ecomp=1.433E+0, Ermsq=2.861E-3, Emax=0.0368, Errs=2.996%, Era=2.631%, Texe=33.000ms

Illustration of relative error of the isentropic exponent due to its approximation by GMDH model

User interface to our GMDH system

05Bal_New_Kq_N	lo_k_15	_all_5	0_4_5	0_CE_	0.7657	7_3.967_37.gmd		
File Run View								
Maximum Total No. Of Layers	15 💌	Status: N	/lodel found	atlayerno.	15!	Verify model on TEST s	amples	
Mode	All layers 💌	,	Laye	er selector: 1	5 👻	Verify model on LEARNING	Gisamples	
Descriptors Per Layer	50 💌		Colum	in selector:		Correlation coefficient		_
MSUE Inreshold Ut Layer	1000000	Attribute se	lection crite	ria:		Mean absolute error		
Maximum Allowable MSQ Error	100000	Min rel. CE	(quadratic	RRS, T), Cb	al 💌	Root mean squared error		
RRSE I nresnold %	4	Т	otal number	of variables:	9	Root relative squared error %		
FT Threshold in s	0.050	Total num	nber of learr	ning samples	20000	Relative absolute error %		
EP addition ET in s	0.050	Tota	I number of	test samples	20000	Maximum Error		
ED multiplication ET in a	0.000050	P0: MPa	1.00000	T0: MPa	263	Relative maximum error %		
r – manaprication E r in s	0.000150	dP MPa	0.5	ЧТ·К	10	Execution time in seconds		
Learning and test examples: Chal	0.5	dP steps	22	dT steps	7	Ka dow V Gas3 V Be	IErr 💌	Dp [Pa] DDT
Project Read OV	J 0.5		Jee		1'		· _ ·	Pd [mm]
Troject Read on.								200
								Od [mm]
							~	20 Param na
<							>	
Polynomials:								No of channels
RESULTS: Error status= 0							^	20
Mode = 1						Channel width		
Tot. no of Layers = 12								
Tot. no of LS = 12 Tot. no of TS = 3								Order the
POLYNOMIALS, RMSQ Error & COEFFICIENTS:						RMSQ		
Layer 1							_	sensitivity using test data set
Total No of Qualified Descriptors at	Layer1 = 1						*	
							>	
Equation:								
							~	

Conclusions

- CE measure proves to be very efficient when building the GMDH models for real-time application
- It forces the GMDH algorithm to tailor the model with respect to the accuracy and the complexity
- It makes complex procedures feasible in real-time with acceptable degradation of approximation accuracy
- It can be modified to enable model generation by controling multiple parameters
- GMDH algorithm can be applied to modeling the complex problems in science and in economy