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� (Manning and Schütze 1999)
“...an expression consisting of two or more words that 
correspond to some conventional way of saying 
things.”

� Many different deffinitions ...

Collocation

� Many different deffinitions ...

� An uninterrupted sequence of words that generally 
functions as a single constituent in a sentence (e.g., 
stock market, Republic of Croatia).



Collocation

Applications:
� improving indexing in information retrieval 

(Vechtomova, Robertson, and Jones 2003)

� automatic language generation (Smadja and 
McKeown 1990)

� word sense disambiguation (Wu and Chang 2004),� word sense disambiguation (Wu and Chang 2004),

� terminology extraction (Goldman and Wehrli 2001)

� improving text categorization systems (Scott and 
Matwin 1999)



More general term - n-gram of words – any 
sequence of n words (digram, trigram, 
tetragram)

Collocation extraction is usually done by assigning 
each candidate n-gram a value indicating how 

Collocation

each candidate n-gram a value indicating how 
strongly the words within the n-gram are 
associated with each other.



More general term - n-gram of words – any 
sequence of n words (digram, trigram, 
tetragram)

Collocation extraction is usually done by assigning 
each candidate n-gram a value indicating how 

Collocation extraction

Association measures

each candidate n-gram a value indicating how 
strongly the words within the n-gram are 
associated with each other.



Association measures

Examples:

� MI (Mutual Information):
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Based on hypothesis testing:

� χχχχ2:
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Association measures

� log-likelihood:
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Collocation extraction

Example:

digram Assoc.measure value

stock market 20.1

machine learning 30.7machine learning 30.7

town Slavonski 10.0

New York 25.2

big dog 7.2

new house 7.4

White house 16.2



Collocation extraction

Example:

digram Assoc.measure value
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Association measures extensions 

Extensions:
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Evaluation of AMs

� Needed: 

sample of collocations and non-collocations

� F1measure:
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Our approach based on genetic programming

� Similar to genetic algorithm

� Population 

� Selection

� Fittness function

� Crossover� Crossover

� Mutation

� GP: Evolution of programs in the forms of trees



Genetic programming

� Idea – evolution of association measures

� Fitness function – F1

max

max
1

)(
)()(

L

jLL
jFjfittness

−
+= η



Genetic programming

� Idea – evolution of association measures

� Fitness function – F1
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� Specifics:

� Parsimony pressure

� Stopping conditions – maximal generalisations

� Inclusion of known AMs in the initial population



Nodes and leaves

Operators Operands

+, - const

*, / f(.)

ln(|x|) N

IF(cond, a, b) POS(W)



Examples

MI:DICE coefficient:



One solution

Heuristics H:



Recombination (crossover)

parents

ln

children

� Exchange of subtrees



Mutation

Node insertion:

Node removal:



Experiment

� Collection of 7008 legislative documents 

� Trigram extraction – 1.6 million

� Two samples of classified trigrams:
� Each sample 100 positive  + 100 negative 

examples



Generalisation

Stopping conditions – maximal generalisations

maximal 

generalisations



Experimental settings

� We used three-tounament selection

� We varied the following parameters:
� probability of mutation [0.0001, 0.3]

� parsimony factor [0, 0.5]� parsimony factor [0, 0.5]

� maximum number of nodes [20, 1000]

� number of iterations before stopping [104, 107]

� In total, 800 runs of the algorithm (with different 
combinations of mentioned parameters)



Results

� About 20% of evolved AMs reach F1 over 80%
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Results

Interpretation of evolved measures in not easy (M205):

f(abc) f(a) f(c) * / f(abc) f(ab) f(c) - f(c) f(bc) f(b) -f(abc) + / + / N * f(b) + * 
ln f(c) f(b) * * N f(a) * f(abc) f(a) f(abc) f(a) f(c) * / f(bc) * f(bc) f(b) + / 
f(a) N AKO(vr(b)={X}) * (-14.426000) f(b) + / N * f(bc) f(b) -(2.000000) * ln ln / 
f(a) f(c) * (2.000000) * ln ln / N * ln * / f(bc) * f(bc) f(b) + / N * (-14.426000) 
f(b) + / N * f(abc) N f(a) * f(a) f(abc) f(a) f(c) * / f(bc) * f(abc) f(b) + / N * (-
14.426000) f(b) + / N * f(b) f(c) * ln ln / f(abc) f(a) f(c) * / f(c) * ln ln 
(2.000000) * ln ln / N * / N * / N * ln f(c) * / f(a) f(b) + * ln ln f(abc) f(abc) 
f(a) f(a) N AKO(vr(b)={X}) (-14.426000) f(b) + * / N * / N * ln f(c) * / f(a) f(b) + 
* ln ln * ln ln / f(abc) f(a) f(c) * / f(a) f(b) + * ln ln (2.000000) * ln ln / N * * ln ln * ln ln / f(abc) f(a) f(c) * / f(a) f(b) + * ln ln (2.000000) * ln ln / N * 
ln ln AKO(vr(c)={X}) N * AKO(vr(b)={X})

� Verification on other collections



Results

Some results are more easily interpretable (M13):

(-0.423000) f(c) * f(abc) / f(a) * f(abc) f(b) 

- AKO(POS(b)={X}) f(abc) /
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Results

� 96% of measures with F1 over 82% contain operator IF 
with condition “second word is a stopword”.



Conclusion

� Standard measures are imitated by evolution

� Genetic programming can be used to boost 
collocation extraction results for a particular corpus 
and to “invent” new AMsand to “invent” new AMs

� Futher reasearch is needed:

� Other test collections (domains, languages)

� Extraction of digrams, tetragrams...



Thank you


