Collocation Extraction using Genetic Programming

CADIA

Bojana Dalbelo Bašić

University of Zagreb Faculty of Electrical Engineering and Computing

bojana.dalbelo@fer.hr,

Worksp KDSA 2009 Zagreb, IRB 2009-11-12

Jan Šnajder, Bojana Dalbelo Bašić, Saša Petrović, Ivan Sikirić, Evolving new lexical association measures using genetic programming, The 46th Annual Meeting of the Association of Computational Linguistic: Human Language Technologies, Columbus, Ohio, June 15-20, 2008.

Outine

- Collocations
- Genetic programming
- Results

CADIA

Conclusion

Collocation

CADIA

(Manning and Schütze 1999)

"...an expression consisting of two or more words that correspond to some conventional way of saying things."

- Many different deffinitions ...
- An uninterrupted sequence of words that generally functions as a single constituent in a sentence (e.g., stock market, Republic of Croatia).

Collocation

Applications:

- improving indexing in information retrieval (Vechtomova, Robertson, and Jones 2003)
- automatic language generation (Smadja and McKeown 1990)
- word sense disambiguation (Wu and Chang 2004),
- terminology extraction (Goldman and Wehrli 2001)
- improving text categorization systems (Scott and Matwin 1999)

Collocation

More general term - n-gram of words - any sequence of n words (digram, trigram, tetragram)

Collocation extraction is usually done by assigning each candidate n-gram a value indicating how strongly the words within the n-gram are associated with each other.

Collocation extraction

CADIA

More general term - n-gram of words - any sequence of n words (digram, trigram, tetragram)

Collocation extraction is usually done by assigning each candidate n-gram a value indicating how strongly the words within the n-gram are associated with each other.

Association measures

Association measures

Examples:

• MI (Mutual Information):

$$I(a,b) = \log_2 \frac{P(ab)}{P(a)P(b)}$$

DICE coefficient:

$$DICE(a,b) = \frac{2f(ab)}{f(a) + f(b)}$$

Association measures

Based on hypothesis testing:

log-likelihood:

$$\chi^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

 $G^{2} = \sum_{i,j} O_{ij} \log \frac{O_{ij}}{E_{ii}}$

 χ^2 :

Collocation extraction

Example:

digram	Assoc.measure value
stock market	20.1
machine learning	30.7
town Slavonski	10.0
New York	25.2
big dog	7.2
new house	7.4
White house	16.2

Collocation extraction

Example:

digram	Assoc.measure value
machine learning	30.7
New York	25.2
stock market	20.1
White house	16.2
town Slavonski	10.0
new house	7.4
big dog	7.2

Association measures extensions

Extensions:

$$I_1(a,b,c) = \log_2 \frac{P(abc)}{P(a)P(b)P(c)}$$
$$I_1'(a,b,c) = \log_2 \frac{P(abc)f(abc)}{P(a)P(b)P(c)}$$

$$H(a,b,c) = \begin{cases} 2\log_2 \frac{P(abc)}{P(a)P(c)}, & \text{stop(b)} \\ I_1(a,b,c), & \neg\text{stop(b)} \end{cases}$$

Our approach based on genetic programming

- Similar to genetic algorithm
 - Population
 - Selection
 - Fittness function
 - Crossover
 - Mutation

DIA

A

GP: Evolution of programs in the forms of trees

Genetic programming

- Idea evolution of association measures
- Fitness function F₁

$$fittness(j) = F_1(j) + \eta \frac{L_{\max} - L(j)}{L_{\max}}$$

Genetic programming

- Idea evolution of association measures
- Fitness function F₁

Specifics:

ADIA

- Parsimony pressure
- Stopping conditions maximal generalisations
- Inclusion of known AMs in the initial population

Nodes and leaves

Operators	Operands
+, -	const
*, /	f(.)
ln(x)	Ν
IF(cond, a, b)	POS(W)

Examples

DICE coefficient:

CADIA

MI:

One solution

Heuristics H:

ADIA

Mutation

Node insertion:

Node removal:

Experiment

- Collection of 7008 legislative documents
- Trigram extraction 1.6 million
- Two samples of classified trigrams:
 - Each sample 100 positive + 100 negative examples

Experimental settings

- We used three-tounament selection
- We varied the following parameters:
 - probability of mutation [0.0001, 0.3]
 - parsimony factor [0, 0.5]

ADIA

- maximum number of nodes [20, 1000]
- number of iterations before stopping [10⁴, 10⁷]
- In total, 800 runs of the algorithm (with different combinations of mentioned parameters)

About 20% of evolved AMs reach F₁ over 80%

Figure shows F1 score and number of nodes

Interpretation of evolved measures in not easy (M205):

f(abc) f(a) f(c) * / f(abc) f(ab) f(c) - f(c) f(bc) f(b) -f(abc) + / + / N * f(b) + * ln f(c) f(b) * * N f(a) * f(abc) f(a) f(abc) f(a) f(c) * / f(bc) * f(bc) f(b) + / f(a) N AKO(vr(b)={X}) * (-14.426000) f(b) + / N * f(bc) f(b) - (2.000000) * ln ln / f(a) f(c) * (2.000000) * ln ln / N * ln * / f(bc) * f(bc) f(b) + / N * (-14.426000) f(b) + / N * f(abc) N f(a) * f(a) f(abc) f(a) f(c) * / f(bc) * f(abc) f(b) + / N * (-14.426000) f(b) + / N * f(b) f(c) * ln ln / f(abc) f(a) f(c) * / f(c) * ln ln (2.000000) * ln ln / N * / N * ln f(c) * / f(a) f(b) + * ln ln f(abc) f(abc) f(a) f(a) N AKO(vr(b)={X}) (-14.426000) f(b) + * / N * / N * ln f(c) * / f(a) f(b) + * ln ln * ln ln / f(abc) f(a) f(c) * / f(a) f(b) + * ln ln (2.000000) * ln ln / N * ln ln AKO(vr(c)={X}) N * AKO(vr(b)={X})

Verification on other collections

CADIA

Some results are more easily interpretable (M13):

(-0.423000) f(c) * f(abc) / f(a) * f(abc) f(b)
- AKO(POS(b)={X}) f(abc) /

$$M13(a,b,c) \approx \begin{cases} \frac{2f(abc)^2}{f(a)f(c)}, & \text{stop(b)} \\ \frac{f(abc)}{f(b)}, & \neg\text{stop(b)} \end{cases}$$

96% of measures with F₁ over 82% contain operator IF with condition "second word is a stopword".

Conclusion

- Standard measures are imitated by evolution
- Genetic programming can be used to boost collocation extraction results for a particular corpus and to "invent" new AMs
 - Futher reasearch is needed:
 - Other test collections (domains, languages)
 - Extraction of digrams, tetragrams...

