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Abstract

Rule learning systems use features as the main building blocks for

rules. A feature can be a simple attribute-value test or a test of the va-

lidity of a complex domain knowledge relationship. Most existing concept

learning systems generate features in the rule construction process. How-

ever, the separation of feature generation and rule construction processes

has several theoretical and practical advantages. In particular, the pro-

posed transformation from the attribute to the feature space motivates a

novel, theoretically justified procedure for handling of unknown attribute

values. This approach suggests also a novel procedure for handling impre-

cision of numerical attributes. The possibility of controlling the expected

imprecision of numerical attributes during the induction process is a novel

machine learning concept which has a high application potential for solv-

ing real world problems.

Keywords: rule learning, features, unknown attribute value, imprecision of
attribute values

1 Introduction

All real world applications of inductive learning systems are confronted with the
problem of unknown attribute values in the training set. The simplest approach
is to ignore examples with unknown attribute values. But this approach can be
applied only when the number of unknown values is small and the number of
available examples is very large. A commonly used approach is to replace miss-
ing values with a default value in the data preparation phase. For example, CN2
[2] replaces unknown values of discrete attributes by most commonly occurring
value (the mode value), and unknown values for continuous attributes by the
average value (the mean value). It is also possible to substitute the unknown
values by random values or to try to estimate their values from known values
of other attributes in the same example. These and similar techniques have
drawbacks, especially when the number of unknown attribute values is high.
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Extensive experiments presented in [1] demonstrate that none of the mentioned
approaches is absolutely superior compared to the others.

An alternative approach suggested in [9] is to reduce the apparent gain from
testing attribute A by the proportion of cases with unknown values of A. The ra-
tionale behind this approach is that testing attribute A will yield no information
when it has unknown values, and when A has unknown values for all examples
it is completely useless. The advantage of the approach is that it is theoretically
sound. The problem is that its implementation is not a simple task. In decision
tree induction we can easily appropriately reduce the information gain for the
node testing attribute A that includes unknown values, but we do not have an
effective method to partition examples with unknown values based on such a
node. The consequence is that we can not expect optimal performance in nodes
below the one that is based on an attribute that has many unknown values.
In decision tree induction experiments reported in [9] the approach had simi-
lar prediction quality as those based on substituting unknown values by some
known value in data preprocessing.

The approach based on reducing the gain from testing attributes with un-
known values seems much more appropriate for covering rule induction ap-
proaches. The reason is that we do not have to partition the training set as
in decision tree learning, but only to appropriately redefine the used heuristic
evaluation measure so that the resulting value will get reduced by the propor-
tion of unknown values. Although the principle is simple, there is a practical
problem that, in contrast to decision tree induction, rules typically represent
simultaneous decisions based on more than one attribute value and this makes
the necessary computations very complex. To the best of our knowledge there
is no rule inductive system that implements this approach. Even in [1] where
very different approaches for handling unknown values were tested in the rule
learning setting, the approach based on reducing the evaluation quality values
for unknown attribute values was not mentioned.

In this paper we present a simple and straightforward approach to handling
of unknown values in a rule learning setting using covering rule evaluation mea-
sures. It is based on a possibility to separate the feature construction process
from the rule construction process. In the first phase we construct all poten-
tially useful features and construct covering tables with true and false elements
describing covering properties of features on all the training examples. In the
second phase, representing the actual rule construction process, we use the infor-
mation from these covering tables to find combinations of features with optimal
covering properties. The problem of unknown attribute values is solved during
the covering table construction. Covering values true and false are set so that
covering quality of features is reduced always when the corresponding attribute
value is unknown. After that, the second phase is executed in the same way as if
all attribute values had known values. It means that we do not need to modify
the used heuristic evaluation measures at all. The consequence of appropriately
set covering values for features based on unknown attribute values is that stan-
dard covering evaluation measures will result in the adequately reduced feature
and rule quality. The approach is applicable regardless of the used covering
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Table 1: Illustration of simple and complex features in a domain with three
examples described by three continuous attributes.

Attributes Features
Ai Aj Ak Ai > 3 Ak < 2 · (Aj − Ai)
7 1.5 2 true false
4 3 -4 true true

1.07 2 0 false true

evaluation measure but it is not effective for systems using information gain
evaluation measures.

The organisation of the paper is as follows. In Section 2 we introduce the
concept of features, we briefly describe an algorithm for the construction of
simple features, and illustrate the covering tables construction process. Using
this framework we present the novel approach for handling unknown attribute
values in Section 3. In Section 4 we exploit the proposed unknown value han-
dling methodology also in handling the imprecision of continuous (numerical)
attributes. Finally we describe how the same approach can be applied on ordered
nominal attributes with application in DNA gene expression data analysis.

2 Features in propositional rule learning

Features describe properties of examples (instances). An example either has the
property or it does not have this property. Thus, features are always Boolean-
valued, i.e., either true or false. Features can be simple literals that test a
value of a single attribute, like Ai > 3, or they can represent complex logical
and numerical relations, integrating properties of multiple attributes, like Ak <
2 · (Aj − Ai), as illustrated in Table 1.

It is important to realize that features differ from the attributes that describe
instances in the input data. Attributes can be numerical variables (with values
like 7 or 1.5) or nominal or discrete variables (with values like red or female).
In contrast with attributes, a feature cannot have a missing or unknown value.
As a result, features are different from binary attributes even for binary-valued
attributes that have values true and false.

Note that our use of the term feature is not fully aligned with the practice
in the machine learning community where terms like feature extraction, feature
construction or feature selection are used for approaches that aim at finding a
suitable set of descriptors for the training examples by including expert knowl-
edge, increasing the quality of learning or the expressiveness of the hypothesis
language. As most learning algorithms, such as decision tree learners, focus on
attributes, the term feature is frequently used as a synonym for attribute. In
this paper, we clearly distinguish between these two terms.

Rule learning algorithms are feature-based, because rule learning algorithms
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employ features as their basic building blocks, whereas, for example, decision
tree learning algorithms are attribute-based, because decision trees are con-
structed from attributes. For many rule learning systems this is not obvious
because the process of transformation of attributes into features is implicit and
tightly integrated into the learning algorithm [2], [3]. In these systems, feature
generation is part of the rule building process. The main reason for this strategy
is the simplicity and especially the memory usage efficiency. Explicit usage of
features requires that feature covering tables are constructed and these tables
may be relatively large. Nevertheless, there are rule learning algorithms that
explicitly construct covering tables before starting the rule construction pro-
cess. A classical example is the LINUS system for converting relational learning
problems into a propositional form [6]. In this framework, the concept of literal
relevancy has been introduced by [7].

The generation of features for the given set of training examples is the first
step in the rule learning process. It can also be viewed as the transformation
from the attribute space into the space of features. Although generation of
simple features is a straightforward and a rather simple task, generation of an
appropriate set of sophisticated features is a hard task which is out of the scope
of this paper.

2.1 Feature generation

An algorithm enabling the generation of simple features from attributes for a
two-class classification problem is presented in [4]. The algorithm generates
features separately and independently for each attribute. If an attribute is
discrete then all distinct values in positive examples are detected and for them
features of the form Att = value are generated. Also all distinct values for
negative examples are detected and from them features of the form Att 6= value
are generated. The number of generated features for a discrete attribute is
equal to the sum of distinct attribute values occurring in positive and negative
examples.

For a continuous attribute, features are generated in the following way: We
identify pairs of neighboring values, where neighboring means that there is no
other value between them. From these pairs, we compute the mean of the
two neighboring values (mean value). If there are two neighboring values from
different classes, then if the smaller of the two values is from the positive class we
generate the feature Att < mean value, while if the smaller of the values is from
the negative class we generate the feature Att ≥ mean value. The number of
features generated for a continuous attribute depends on the grouping of classes
in the increasing value list but typically the number of generated features is
proportional to the number of examples.

2.2 Covering tables

A covering table is a table which has examples as its rows and features as its
columns. Table 2 presents a part of the covering table constructed for simple
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Table 2: A part of the covering table generated for the domain with five examples
and three attributes. Included are truth values for five out of ten features
generated for this domain by the algorithm described in Section 2.1

Examples Class Attributes Covering table
Ex. Cl. A1 A2 A3 A1 = red A1 6= red A2 ≥ 0.9 A2 < 1.7 A3 ≥ 1.5 ...
p1 ⊕ red 1.2 4 true false true true true ...
p2 ⊕ blue 1.3 2 false true true true true ...
n1 ⊖ green 2.1 3 false true true false true ...
n2 ⊖ red 2.5 1 true false true false false ...
n3 ⊖ green 0.6 1 false true false true false ...

features generated for a small domain with only three attributes. It can be
noticed that the covering table has much more columns than the corresponding
table presenting the examples by the attributes. Conversion from the attribute
to the feature space thus presents a significant increase of the space complexity.

The covering table has only values true and false as its elements. These truth
values represent the covering properties of features on the given set of exam-
ples. Together with example classes, the covering table is the basic information
necessary for the rule induction process. Rule construction from the available
set of features can be done by any covering based rule induction algorithm. The
actual attribute values are no longer needed for rule construction. The signifi-
cant difference of explicit feature generation compared to standard approaches
is only that we do not generate features from attribute values during rule con-
struction. Instead, the possible features with corresponding covering properties
are obtained from the pre-prepared covering tables.

The price of explicit feature generation is the increase of the space complex-
ity of rule learning algorithms. However, the advantages of explicit introduc-
tion of features are: a possibility to use the covering tables directly for rule
construction, a possibility to introduce feature relevancy and ensure that only
most relevant features really enter the rule learning process (described in [8]),
and a possibility to solve problems of handling unknown attribute values and
imprecision of continuous attributes during feature covering table construction.

3 Unknown attribute values

Note that a good feature to be used in rule construction has the property of
being true for many positive examples and false for many negative examples.
It is possible to formalize this statement in a form of a theorem. To do so, we
start by defining the concept of p/n pairs of examples.

Definition: p/n pair
A p/n pair is a pair of training examples pi/nj where pi ∈ Pos and nj ∈ Neg,
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Table 3: A part of the covering table for the domain from Table 2 which includes
a few unknown attribute values.

Examples Class Attributes Covering table
Ex. Cl. A1 A2 A3 A1 = red A1 6= red A2 ≥ 0.9 A2 < 1.7 A3 ≥ 1.5 ...
p1 ⊕ red ? 4 true false false false true ...
p2 ⊕ blue 1.3 2 false true true true true ...
n1 ⊖ ? 2.1 3 true true true false true ...
n2 ⊖ red 2.5 ? true false true false true ...
n3 ⊖ green 0.6 1 false true false true false ...

where Pos is the set of positive and Neg the set of negative examples.
Definition: Discriminating feature

Let F denote a set of features. Feature f ∈ F discriminates a pair pi/nj iff
feature f correctly classifies both examples, i.e., if feature f has value true for
pi and value false for nj .

Theorem:

For training set E and set of features F a complete and consistent hypothesis
H can be found using only features from set F if and only if for each possible p/n
pair from training set E there exists at least one feature f ∈ F that discriminates
the p/n pair.

The proof of the theorem can be found in [7].
This theorem indicates that a good feature for rule construction is the one

that discriminates many p/n pairs. An ideal feature has a property to be true
for all positive and false for all negative examples because it discriminates all the
p/n pairs. If the feature discriminates no p/n pairs it is completely irrelevant
and can me immediately eliminated from the further rule construction process.
In the situation when we have an example with the unknown attribute value,
and when because of that we can not determine the real feature truth values
for the features that test this attribute value, we should set the truth values of
these features so that the features do not discriminate all p/n pairs built from the
example. In this way, by reducing their covering properties, we directly penalize
the features for those and only those examples that have unknown attribute
values. If we have an attribute with unknown values for all the examples then
all the features that test the attribute will not be able to discriminate any p/n
pair and all such features will be irrelevant.

Definition 3 states that a feature discriminates a p/n pair only if the feature
is true for the positive and false for the negative example. It means that when
we have a positive example for which we can not determine the real feature
truth values then we should set them to false. In this way the features will be
not able to discriminate all p/n pairs built with this positive example. Based
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on the same reasoning we see that for negative examples we should set feature
truth values to value true when we do not know the real value. Only in this way
we can ensure that the features will not discriminate all p/n pairs built with
this negative example. The approach is illustrated in Table 3.

The consequence of the above procedure is that values false introduced in
positive examples for unknown attribute values will be interpreted as false nega-
tive predictions by rule quality evaluation measures. In the same way, values true
in negative examples will be interpreted as false positive predictions. Because
every reasonable rule quality measure favours rules with many true positive and
true negative classifications, the result is the degradation of the computed qual-
ity values for rules build from features that rely on attributes with unknown
values.

The advantage of the proposed approach is that we do not have to change
the rule induction process at all. Rules are constructed from completely spec-
ified features, rule quality measures may remain unchanged, and features can
be combined in the rules in the same way as if all attribute values were known.
Actually we can also incorporate the described approach in the rule induction
algorithms that construct features during the rule construction process. But
having explicit covering table is a good strategy not only because of handling
unknown attribute values but also because it enables the detection and elimi-
nation of irrelevant features before the rule induction process starts.

At the end let us notice that the approach can be directly applied also for
complex features. For example, feature Ak < 2 · (Aj − Ai) from Table 1 will
have unknown value when any of attributes Ai, Aj , and Ak has unknown value.
The principle is easily extendable to features of any complexity with included
both numerical and logical operations.

4 Imprecision of continuous attributes

Another problem encountered in real world rule learning applications is the
problem of imprecise values. Imprecision is inherent to most non-integer con-
tinuous attributes. There are two main reasons for the necessity of imprecision
handling. The first is that some continuous attributes are not or can not be
measured with high precision (like some biological properties) or their values
are significantly fluctuating (e.g., human blood pressure). In such cases, if the
example values are very near to the decision values used in the features then the
actual feature truth values for such examples are unreliable. The second reason
is that although some attributes like income or human age can be known very
precisely, building rules from features that have supporting examples very near
to the decision values used in the features may be a bad practice. The reasoning
is that such features may lead to rules with significant overfitting, or, in case
of descriptive induction, may result in non-intuitive rules like that 20 years old
people have significantly different properties from those having 19 years and 11
months.

An approach to deal with inherent attribute imprecision, regardless of which
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Table 4: A part of the covering table for the domain from Table 2 generated
with the assumption of the expected attribute imprecision value δ = 0.35.

Examples Class Attributes Covering table
Ex. Cl. A1 A2 A3 A1 = red A1 6= red A2 ≥ 0.9 A2 < 1.7 A3 ≥ 1.5 ...
p1 ⊕ red 1.2 4 true false false true true ...
p2 ⊕ blue 1.3 2 false true true true true ...
n1 ⊖ green 2.1 3 false true true false true ...
n2 ⊖ red 2.5 1 true false true false false ...
n3 ⊖ green 0.6 1 false true true true false ...

type it is, is to treat attribute values near to the feature decision values as un-
known values in order not to allow that such close values will affect feature
quality. Such ‘soft’ unknown values are handled as standard unknown attribute
values described in Section 3. It must be noted, however, that the actual at-
tribute value is known, therefore it may happen that for a feature with some
decision value it should be treated as unknown, while for some other feature
with a different decision value it may be treated as a regular known value.
More precisely, appropriate dealing with continuous attributes is such that in
case of a feature decision value d we have to treat all attribute values v in the
range d−δ < v < d+δ as unknown attribute values, for δ being the user-defined
attribute imprecision boundary.

For illustration in Table 4 we have assumed during covering table generation
that the expected attribute imprecision value is 0.35 (δ = 0.35). This assump-
tion has practical consequences for the feature A2 ≥ 0.9 only, resulting by two
’soft’ unknown values when attribute A2 has values 1.2 and 0.6 which are less
than δ far from the feature decision value 0.9. It can be noticed that this does
not affect the truth values of the feature A2 < 1.7 which has a different decision
value.

The example presented in Table 5 demonstrates an artificial situation with
two very similar continuous attributes such that from both ideal features dis-
criminating all 25 p/n pairs can be generated. But when the notion of impre-
cision of continuous attributes is introduced, the situation may change signif-
icantly. The right part of the table presents covering properties of the same
features but with imprecision of 0.17. Now none of the features is ideal. The
first discriminates 9 and the second 16 p/n pairs. Although with assumed im-
precision 0.0 both features seem equally good, with assumed imprecision 0.17 we
have clear preference for the second feature. By analyzing the attribute values
it really seems that it is better to use attribute A2 because it may turn out to
be a more reliable classifier in an imprecise environment.

It is important to notice that the presented approach to handling impreci-
sion of continuous attributes can be applied also when we have ordered nominal
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Table 5: The example demonstrates the difference in feature covering properties
for imprecision values 0.0 and 0.17 respectively. Attributes A1 and A2 are very
similar but there are significant differences in feature covering properties when
different expected attribute imprecision is taken into account.
Examples Attributes Features (with δ = 0.0) Features (with δ = 0.17)
Ex. Cl. A1 A2 A1 < 1.95 A2 < 1.95 A1 < 1.95 A2 < 1.95
p1 ⊕ 1.5 1.5 true true true true
p2 ⊕ 1.6 1.6 true true true true
p3 ⊕ 1.7 1.65 true true true true
p4 ⊕ 1.8 1.7 true true false true
p5 ⊕ 1.9 1.8 true true false false
n1 ⊖ 2.0 2.1 false false true true
n2 ⊖ 2.1 2.2 false false true false
n3 ⊖ 2.2 2.25 false false false false
n4 ⊖ 2.3 2.3 false false false false
n5 ⊖ 2.4 2.4 false false false false

attributes. A good example are biological gene expression domains with pres-
ence call (signal specificity) values A (absent), P (present), and M (marginal).
Although in this situation attributes have three discrete values A, M , and P ,
practically they are a formalization of values low, medium, and high. In each de-
cision we have a problem to define if medium (marginal) values will be treated as
low or high values. A principally clean solution is a possibility to treat medium
values as unknown values. The described methodology can be interpreted also
as handling imprecision of numerical attributes by selecting the expected im-
precision value so that medium value M is always in the undefined region near
to the assumed decision point. The methodology and the results are presented
in [5].

5 Conclusions

We have defined features as the basic rule building blocks, and described a simple
algorithm for the generation of propositional features that provably generates
only the potentially relevant features both for discrete and continuous attributes.
Explicit feature generation and presentation of their covering properties in the
covering table has several important advantages. The basic idea is that the
complete rule construction process can be done using only the information from
the covering tables, which are an appropriate representation format for various
learning algorithms.

The most relevant consequence is a possibility of systematic handling of rele-
vancy of features with the possibility to detect and eliminate irrelevant features
from the process of classification rule learning. In this paper we have demon-
strated that explicit definition of features is useful also for systematic handling of
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unknown attribute values. In contrast to existing approaches which try to sub-
stitute an unknown value with some good approximation, we have addressed
the problem of handling of unknown values by appropriately defining feature
truth values for such attribute values. The approach is simple, applicable also
to complex features based on many attributes, and well justified.

The problem of imprecision of continuous attributes is seldom analyzed in
the rule learning framework although it can be very relevant for real life domains.
The problem is solved so that attribute values near to the feature decision value
are treated as unknown attribute values. The approach relies on the user’s
estimation of the expected imprecision levels and the possibility to efficiently
handle unknown attribute values through covering properties of generated fea-
tures. There is a possibility to apply the same approach also for nominal values
representing classes of numerical values which can be ordered by magnitude.

Signal specificity attributes in gene expression domains with values absent,
marginal, and present are a good example of such attribute. It is known that
gene expression domains are very prone to overfitting due to a large number of
attributes in domains with a very modest number of examples. Extensive exper-
iments in these domains have demonstrated that using signal specificity instead
of signal intensity values, especially in combination by handling marginal values
as unknown values is a effective method for overfitting prevention [5]. Also,
we have applied the described approach for handling imprecision of numerical
attributes in different, especially medical domains [4]. By experimenting with
various expected imprecision levels in all of these domains the approach has
demonstrated to be able to help construct features and rules describing general
concepts easily interpretable by humans.
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[7] N. Lavrač, D. Gamberger, and V. Jovanoski. A study of relevance for
learning in deductive databases. Journal of Logic Programming, 40(2/3):
215–249, 1999.
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