
Developing Factual Knowledge from Medical Data by Composing Ontology
Structures

Marin Prcela1, Dragan Gamberger1, Nikola Bogunovi�2

1 Ru er Boskovi Institute, Laboratory for Information Systems, Bijeni ka 54, 10000 Zagreb, Croatia � � �

2 Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

 Phone: (+385) 1-456 1159 E-mail: marin.prcela@irb.hr

Abstract - Decision support systems in medical applications

essentially rely on knowledge acquired from existing patient

databases. The core task in developing knowledge from such

raw data is a mapping from the relational data model to the

domain ontology structure. The paper will explicate the

mapping process by introducing a software agent with extract,

transform and load capabilities. The agent is able to read the

data from the database and transform it to the ontology

knowledge representation that can be effectively used by the

embedded reasoning engine of the decision support system.

I. INTRODUCTION

Knowledge-based medical systems and applications can
make clinical practices (semi)automated and in the same
time improve their quality. The potential benefits are
observable through structured and omnipresent standard
formalized clinical practice guidelines that improve the
quality of services they provide, enhance the quality of life
for patients and reduce the costs both for the patients and the
health service providers [4].

In modern knowledge engineering, building intelligent
systems is not seen as the encoding of production rules or
the creation of specific knowledge representations. Rather,
the process is viewed as the design and assembly of domain
ontologies, the knowledge bases that instantiate those
ontologies, and domain-independent problem-solving
methods. Given a task that must be automated, the challenge
is to construct an appropriate problem-solving method, and
to link that problem solver to an ontology that defines the
relevant concepts in the application area. A lot of effort has
already been made in developing such applications and
systems [4].

The crucial part and the core of every such system is
medical knowledge that has been in some way gathered,
written and loaded into the system�s knowledge base. Every
decision and action that the platform performs is based on
the knowledge from the knowledge base. The term factual
knowledge represents the knowledge about patients (facts)
that is extracted from the database and included in the
reasoning process.

Nowadays every health institution keeps data about
patients inside its local database. One must take this fact
into consideration when building a large medical
information and decision support platform. It is not possible
to force the institution to adapt its complete infrastructure to
the platform, rather the platform must adapt to the
institution�s infrastructure. Different institutions have
different databases, which makes the process of that
adaptation very difficult.

To ease that process of adaptation a novel KBDB-ETL
(Knowledge Base from DataBase by Extraction,

Transformation and Loading) component (agent) is
introduced in this paper. That component should be able to
read the data from the database and transform it to the form
that the platform�s reasoning agent can work with.

The organization of the paper is as follows. In the next
section we describe the concept of the reasoning system
using the knowledge represented in the ontological form. In
the third section a brief description of related work is given.
In the fourth section a detailed explication of the KBDB-
ETL component at work is given. In the conclusion certain
advantages and drawbacks of the implemented KBDB-ETL
component are discussed.

II. ONTOLOGY BASED REASONING

Fig.1 illustrates the decision support system (DSS)
experimentally realized for the knowledge based platform.
In it the ontology has the central role of knowledge
representation. It contains both domain concepts and factual
knowledge about patient characteristics. Actionable
knowledge is in the form of rules connecting domain
concepts. The reasoner takes as its input ontological
knowledge (both concept and factual) and rules. The results
of reasoning are actionable suggestions in the ontological
form, i.e. the patient with identification number X is an
instance of the class for which therapy Y is suggested. In
order for such reasoning to become possible, factual
knowledge about real characteristics of the patient X has to
be available in real time in the ontology (like patient X has
property Z). It is the task of the component for developing
factual knowledge to prepare this information based on data
in the patient database.

The scenario of the DSS component at work is as follows:
The DSS component is initially waiting in the idle state. The
activity on the platform generates an event (1) that is served
through the platforms middleware to the DSS interface. The
event is forwarded to the DSS control unit (2). The control
unit initiates (3) the KBDB-ETL unit to fetch (4, 5) the
relevant data from the patient database (through the
middleware interface). That data is transformed and loaded
into ontology (6) and into the reasoner (7) as a set of facts.
The reasoning process is performed and the knowledge
generated in the reasoning process is loaded back into the
ontology (8), and forwarded (9) to the ontology interpreter.
Based on that knowledge the interpreter generates a
platform action that is passed through the DSS interface (10)
to the middleware (11). The procedure for the DSS
component is finished and it returns to the idle state, waiting
for the other possible event.

Fig. 1. The flow of data and a sequence of actions in a single

DSS event handling session.

The experimentally realized KBDB-ETL system is
developed in Java programming language, and supports two
ontology types: the semantic web standard OWL ontology
format (Jena API) and the Protégé Frames ontology
language (Protégé API). The experimentally realized
decision support system uses JESS as the reasoner (JESS
API).

III. RELATED WORK

The described problem has been mostly addressed by the
tools and methods from the area of the Semantic Web. The
need for emerging the data stored in the database to the
surface in the form of active and dynamic web pages is
referenced by the term �deep web�. The activity in that area
has produced a number of various mapping tools.

The mappings in the intelligent information integration
area are commonly built with ad-hoc software
implementations (Observer [7], Pixel [5]) that are integrated
within systems and built upon the specific system
requirements.

Some effort has been made in developing heuristic
methods that can make the mapping process
(semi)automated (KAON-Reverse [8], MAPONTO [1]).
The mappings are inferred on the basis of the previously
made ones (semi-automatic), or on the basis of the
syntactic/structural similarities (automatic).

Three approaches have been recognized in the process of
database/ontology mapping [3]:

� Generation of a completely new ontology
(limitations free) based on a given DB model.

� Description of a procedure how to fetch the data
for each ontology item from the database.

� Mapping the complete existing database to the
existing ontology (highest complexity).

Methods for mapping data from the database to the
ontology may be compared by the following characteristics
or capabilities:

� Expressiveness. Tools may vary in ability to define
ontology classes, instances and relations;

� Parametrization of SQL and/or ontology
statements. Allow data retrieval and ontology
creation process to be dependent on the other data
sources but the database itself;

� Handling missing database data (or ontology type).
This issue must be handled in highly reliable
applications like medical platforms;

� Glossary replacements. Allow translation of the
database terminology to the ontology terminology
by usage of the glossary;

� Ontology types supported (OWL, RDF(S), Protégé
frames...);

� RDBMS supported (Oracle, MySQL, Informix...).
The vast majority of the tools are RDBMS
independent;

� Other characteristics: price, simplicity, human
readability, maintenance, speed, ...

The most well known database/ontology mapping tools
are D2R MAP with it's extended version eD2R [2], R2O [3],
KAON [8] and MAPONTO [1].

eD2R [2] is a powerful XML-based declarative language.
It describes mappings from database to RDFS/OWL
ontologies (the only supported format). XML-tags in eD2R
are describing the connection to the database, SQL queries
and data mapping with very high expressiveness. However,
parametrized ontology and SQL statements are not
implemented; they are assumed to be implemented
externally. eD2R is the representative example of the second
above mentioned approach.

R2O [3] is a mapping language that maps the database
data to the RDF(S) or OWL schema. It is conceived to cope
with complex mappings regardless of the ontology/database
structure similarities and differences. The syntax of the R2O
language is very expressive, but also very complex and not
intended to be read or created manually by humans (GUI
tools are under development). R2O provides a series of
other tasks like self verification, DB integrity verification
etc. R2O fits the third above mentioned approach.

KAON [8] provides a visual mapping tool to define
relations between database and ontology objects. Also, it
provides KAON-Reverse [8], a heuristic method that makes
the mapping process semi-automated by analyzing database
structure, including relations, attributes, attribute types,
primary keys, foreign keys/inclusion dependencies. It fits
the third above mentioned approach.

Somewhat different approach is to describe the database
structure using the Relational.OWL schema [6], and then to
extract the data by using the SPARQL ontology query
language [6].

Developing factual knowledge is the process that has to
be repeated very often, practically for every reasoning
circle. It means that the process must be fast and appropriate
for on-line execution. Ad-hoc software implementations are
not appropriate solutions because different implementations
of the knowledge based platform may have to work with
differently implemented patient database systems. The
developing factual knowledge component is the only part of
the DSS that has to be re-implemented for every possible
database system and their upgrades. It means that some
interpreter language that enables flexible but fast fetching,
transforming and loading the data into ontology form is
necessary. In the practical implementations, the second of
three above described approaches best fits the needs of the

repetitive mapping. D2R is a typical representative of this
approach. However, some adjustments and improvements
can be made in order to make the process of integration
easier. The KBDB-ETL component introduces the
improvements that are described in the following chapter.

IV. KBDB-ETL COMPONENT AT WORK

The KBDB-ETL component has a built in interpreter
language that enables fetching, transforming and loading the
data. The program written in KBDB-ETL language consists
of set of KBDB-ETL statements that are executed
sequentially. Each statement consists of two parts:

� SQL statement

� Ontology statement

In the Fig.2. the role of the KBDB-ETL statement is
depicted. The SQL statement is updated according to the
data from the external sources and the glossary. Then it is
executed and the data from the database is fetched. The
ontology statement is updated according to the data from the
database, the data from the external sources and the glossary
data. Ontology statement is �executed� and the results are
stored in the ontology.

A. Fetching data from the database

Each SQL statement fetches the data in a form of a table,
where each row represents a single result set.

TABLE I

DATA FETCHED FROM THE DATABASE

The SQL syntax alone is very expressive; it provides a
powerful tool to extract very specific data items from the
database with a little effort. Prior to the execution, the SQL
statement is being updated with the glossary replacements
and the event parameters as described later in the text.

B. Storing the data in the ontology

The ontology statement is executed once for each result
set fetched from the database. The ontology statement has a
following syntax:

[(Class_1 Individual_1

[(Property Class_2 Individual_2)]*

)]*

The square brackets paired with �*� sign denote that the
expression enclosed may be repeated zero or more times.
Here are the examples of valid ontology statements:

Fig. 2. Process of transformation from the database data to the

ontology factual knowledge.

(Drug Diuretic)

Ontology will be updated with new individual named
Diuretic of a class named Drug. If the ontology already
contains an individual with the same class and individual
name it will be reused. Since in the ontology statement there
are no denoted individual properties none will be added.

(Test Echo_Results

 (LVEF_value Integer 43)

)

Individual named Echo_Results of a class Test is
found/created in the ontology and integer value �43� is
added as a property value to its property named
LVEF_value.

(Patient Lorelai

 (has_Symptom Symptom Pulmonary_Oedema)

 (has_Symptom Symptom Peripheral_Oedema)

)

Individuals Lorelai, Pulmonary_Oedema and
Peripheral_Oedema of the corresponding classes are
found/created. Symptoms Pulmonary_Oedema and
Peripheral_Oedema are added as a property values in
patients property slot has_Symptom for the individual
Lorelai (property has_Symptom must be configured to
allow multiple values). If slot allows only a single value
every time the new value is added, the old one will be
erased.

If individual with the same name already exists in the
ontology it will be reused. That way each individual can be
created in any statement and edited from one or more of the
following statements.

C. References to the result set (operator �!�)

To insert data fetched from the database we use the prefix
operator �!� paired with the result set column name. If any
word in the ontology statement starts with this prefix it is
being replaced with the corresponding value found in the
current result set. Here is an example:

(Patient !PatientID

 (first_name String !FirstName)

 (date_of_birth Date !DOB)

)

For the data shown in the Table I. this ontology statement
is evaluated to:

(Patient 2045

 (first_name String John)

 (date_of_birth Date 25.12.1939)

)

(Patient 3046

 (first_name String Lorelai)

 (date_of_birth Date 31.1.1914)

)

(Patient 10002

 (first_name String Joel)

 (date_of_birth Date 12.1.1946)

)

In this example each result set produces single ontology
statement. For the first result set !PatientId, !FirstName and
!DOB are evaluated to 2045, John and 25.12.1939
respectively.

D. Glossary replacements (operator �@�)

In general case the terminology used in the database does
not match the one used in the ontology. This problem is
handled by the use of glossary replacements. Each term that
occurs in the ontology statement with the prefix �@� is
replaced with its matched pair in the glossary. Also, it is
possible to define more than one glossary in the system; but
in every moment only one glossary is marked as active. This
way each KBDB-ETL statement can have it's own defined
glossary replacements.

Here is an example:

glossary symptoms.txt

// symptoms.txt listing

// LowLVEF LVEF_value_under_45

// HighTemperature Fever

(Patient 2045

 (hasSymptom Symptom @LowLVEF)

)

Keyword glossary activates the glossary file
�symptoms.txt�. The ontology statement is evaluated to:

(Patient 2045

 (hasSymptom Symptom LVEF_value_under_45)

)

If there is no match for the word in the active glossary it
is left intact.

E. Parameters (operator �$�)

The DSS component has to be able to handle a series of
various tasks. From the DSS point of view, the tasks are
described by the type of the event that occurred and the data

in the database. Also, event can carry some attached
information that describe the details of the situation that
caused the event. To handle this kind of problem KBDB-
ETL statements are parametrized. Every word in KBDB-
ETL statement that has a prefix �$� is replaced by its
parameter value. Here is an example:

// Parameters extracted from the event:

// type test_performed

// TestID 30

// PatientID 2045

(Patient $PatientID

 (performedTest Test $TestID)

)

This statement is evaluated to:

(Patient 2045

 (performedTest Test 30)

)

The other mapping tools are not handling the parameters
within the mapping component, they assume that this is
implemented externally. Introducing the parameters into the
mapping component allows the mapping process to be
guided by the data from the external sources. This largely
eases the implementation of the system that is using the
mapping tool, with minor changes in the mapping language
syntax. It also supports the implementation of the ontology
updating process within the mapping component. The
maintenance of the mapping process is eased, since it can be
performed without interfering into the system�s source code.

F. Handling missing values

If some values are missing in the result set they can be
disregarded or replaced with a default value. Here is an
example:

(Patient !PatientID

 (first_name String !first_name)

 (height Float !height,0)

)

If in the result set there is no value for column first_name
the corresponding property will be disregarded. If a missing
value is in the height result set column, it will be replaced
with its substitute default value which is in this case 0
(separated by comma). However, if value for the column
PatientId is missing, the complete ontology statement must
be disregarded, since an individual with no name cannot be
found/created and no default value is offered.

G. Combining operators

The precedence of parameters in statement execution is
from the right to left. Here is an example of combining the
operators to extract, transform and load the data from the
database to the ontology:

// Glossary:

// LowLVEF LVEF_value_under_45

// HighTemperature Fever

// EchoTest Echocardiogram

// Parameters extracted from the event:

// type test_performed

// TestID 30

// PatientID 2045

// SQL statement:

SELECT TestName FROM Test WHERE testId = $TestID

// Ontology statement:

(Patient $PatientID

 (performedTest Test @!TestName)

)

In the SQL statement $TestID is evaluated to 30 based on
the parameters extracted from the event. For example, let
EchoTest be the only value fetched by this statement.

In the ontology statement $PatientID is evaluated to
2045 based on the parameters extracted from the event.
@!TestName is first evaluated to @EchoTest based on the
fetched value from the SQL statement. @EchoTest is
evaluated to Echocardiogram based on the glossary match.
Therefore, the final statement is:

(Patient 2045

 (performedTest Test Echocardiogram)

)

H. Ontology updating

To denote which KBDB-ETL statement should be
executed at which event one can use the update_on
keyword. Here is an example:

update_on ((type==test_performed)&&(TestID==30))

SELECT TestName FROM Test WHERE testId = $TestID

(Patient $PatientID

 (performedTest Test !TestName)

)

All KBDB-ETL statements after the update_on keyword
will be executed if the corresponding boolean expression is
evaluated to be true. The variables in boolean expression
(type and TestID) are the ones delivered with the event
(external sources). A good practice in system integration
would be triggering event on every database change and
adding to the event the information about which database
table/record has been changed/added/deleted.

If the variable used in boolean expression is not denoted
in the event, the complete expression is evaluated to be
false. The syntax in boolean expression is similar to Java
programming language.

V. CONCLUSION

Developing factual knowledge is one of the principal
tasks of the reasoning process based on ontological
knowledge representation. We have demonstrated that the
KBDB-ETL approach with its simple interpreter language is
able to resolve some of the drawbacks of the similar existing
mapping tools. The distinguishing feature is that the
component allows the mapping process to be guided and
controlled by the external data sources. That is
accomplished by parameterized SQL queries and ontology

statements. The syntax of the KBDB-ETL language is
simple due to the assumed transformation from the strictly
defined database structure to the strictly defined ontology
structure.

Although the simplicity of the KBDB-ETL approach
might suggest that also some more complex relations among
data contained in the database could be detected and
manipulated by the KBDB-ETL component, this is assumed
to be a bad design practice. It would be better to perform
numerically complex computations only once in
preprocessing part. However, practice indicates that the need
for complex calculations is rather rare in this kind of
systems. Low and medium complex computations can be
expressed by using the integrated SQL statement syntax, but
it is recommended to encode as much as possible of this
kind of knowledge into the knowledge base system
component. Knowledge base should contain as much
domain knowledge as possible.

The KBDB-ETL component is conceived on the need for
manipulating data within the medical platform environment
but it can be easily integrated in any application that has the
need for database/ontology mapping.

The problems and prospecting work concerning this
configuration are:

� Setting up the KBDB-ETL component and the
ontology interpreter component demands some
expert knowledge (�knowledge integration
problem�);

� If it is known what data has changed in the
database allow that information to make the
reasoning process faster.

ACKNOWLEDGEMENT

This research work is supported by the European
Community, under the Sixth Framework Programme,
Information Society Technology � ICT for Health, within
the STREP project �HEARTFAID: a Knowledge based
Platform of Services for supporting Medical-Clinical
Management of the Heart Failure within the Elderly
Population�, and Croatian Ministry of Science, Education
and Sport project "Machine Learning Algorithms and their
Application".

REFERENCES

 [1] An Y, Borgida A, Mylopoulos J: Refining the Semantic

Mappings from Relational Tables to Ontologies. In

Proceedings of 2nd International workshop on Semantic

Web and Databases (SWDB'04) in conjunction with Very

Large Databases (VLDB'04), p. 84-90.

[2] Barrasa J, Corcho O, Gomez-Perez A: Fund Finder

Wrapper: A case study of database-to-ontology mapping.

Semantic Integration Workshop, SI-2003, p. 9-15.

[3] Barrasa J, Gomez-Perez A: Upgrading Relational Legacy

Data to the Semantic Web. Proceedings of the 15th

International Conference on World Wide Web (Edinburgh,

Scotland, May 23 - 26, 2006). WWW '06, p. 1069-1070.

 [4] de Clercq A., Blom J.A., Korsten H.M., Hasman A.:

Approaches for creating computer-interpretable guidelines

that facilitate decision support. Artificial Intelligence in

Medicine 31(1):1-27.

[5] Goasdoue F, Lattes V, Rousset M: The Use of CARIN

Language and Algorithms for Information Integration: The

PICSEL Project. International Journal of Cooperative

Information Systems, 7:127-140.

 [6] Laborda C, Conrad S: Relational.OWL - A Data and

Schema Representation Format Based on OWL. Second

Asia-Pacific Conference on Conceptual Modelling

(APCCM2005), 43:89-96.

 [7] Mena E, Kashyap V, Sheth A, Illarramendi A: OBSERVER:

An Approach for Query Processing in Global Information

Systems based on Interoperation across Pre-existing

Ontologies. International journal on Distributed And

Parallel Databases (DAPD), 8(2):223-272.

 [8] Stojanovic N, Stojanovic Lj, Volz R: A reverse engineering

approach for migrating data-intensive web sites to the

Semantic Web. Intelligent Information Processing 2002

(IIP-2002, Part of the IFIP World Computer Congress

WCC2002), p. 141-154.

