
1/160

Contemporary Machine Learning
i.e., Computational Intelligence,

or

Classic and Novel ML Tools

Learning Algorithms and

Applications Laboratory (LAAL)
λα
αλ

λα
αλ

Vojislav Kecman

2/160

Greetings from VCU!!!
What is VCU and where is it???

• VCU stands for
VIRGINIA COMMONWEALTH UNIVERSITY

and, the Commonwealth (i.e., State) of Virginia is here

3/160

Richmond, capitol of
Virginia (and of
Confederacy in the Civil
War) is here

4/160

Rodney The Ram

and, the mascot of
our athletic teams is
Rodney the Ram

5/160

Today I will make a gentle walk through
ML approaches and techniques as

follows:

• An Introduction into the area connecting classic tools with
novel ones

• Focusing on the most powerful tool in ML today SVMs
• and, if time allows

– Advanced SVMs concepts and topics
– Basic experimental considerations

• Bias-Variance, Cross-Validation

DON’T WORRY. TIME WON’T
ALLOW THIS TORTURE!!!

6/160

SOME TOPICS

- Living in an ocean of data produced on daily basis what
can, must, should humans do, right now?

a) stop collecting them
b) keep collecting the data and save them for future use
c) collect them and analyze whatever you can right now

- Avoid a drowning in data, while starving for knowledge
- Basic Model of Computational Intelligence (i.e., machine

learning) - The Sum of Weighted Basis Functions
- One model = Many models
- Quo wadis ML ?
- Some Contemporary Tools

7/160

What is a Learning from Data, or
Data Mining, about?

• Mathematics in the last 3,000 years was playing with such
models:

• A(r) = πr2 = w1 r2, v(h) = sqrt(2gh) = w1 sqrt(h) ,
• y = 3x – 2 = w1x + w2, z = -x + y – 3 = w1x + w2y + w3

Parameters wi of the relations are known; given the
independent variable(s) one finds the dependent one(s)!

• TODAY; we want to learn the relation from the measured
pairs (xi, yi) given as data sets, by infering i.e., learning the
UNKNOWN parameter values wi .

• This is an INVERSE PROBLEM stated as:
having the pairs (xi, yi) find the parameters wi, of the model.

• In other words, LEARN the dependency between the xi and
yi!

8/160

or, the problems to solve are a kind of this one:
having the data points find weights (parameters)
which define a function assumed (here linear and

quadratic ones are assumed)

xi

yi

In an real life, examples are same in character but
much larger in both DIMENSIONS and NUMBERS

9/160

I mean ALL possible ‘data’ because, we and our devices are

surrounded by all imaginable measurements,
images, sounds, smells, records, etc.
We produce data, transfer it, compress it, use it, process it, reuse

it, filter it, etc .

But primarily, we want to LEARN FROM DATA, a.k.a.,
examples, samples, measurements, records,

observations, patterns

Today, we live surrounded by an OCEAN OF ‘DATA’?

10/160

- battery-failure data dependency and regression,
- various financial and market analysis (bankruptcy, stock market
prediction, bonds, goods transportation cost data, production
cost data, etc.),

- study of love and marriage regarding the relationships and
feelings of couples,

- air pollution data classification, college test score classification
and prediction, crude oil consumption modeling, closeness
between 11 different languages, and so on.

CLASSIC applications:

- increase in sleep depending on the drug,
- pulmonary function modeling by measuring oxygen
consumption,

- head length and breadths of brothers,
- classification of the Brahmin, Artisan and Korwa caste based
on physical measurements,

- biting flies (genus: Leptoconops) data for classification of the
two species of flies,

(all of the above were linear models, taken from 30 years old statistics books)

11/160

TODAYS (primarily NON-linear) applications:

Note the following strong fact -> there is no field of human
activities today, left untouched by learning from data!!!

Statistical learning is very, very hot nowadays - find patterns,
identify, control, make prediction, make decisions, develop
models, search, filter, compress, …, and some today’s applications
are:

- computer graphics, animations,

- image analysis & compression, face detection, face recognition,

- text categorization, media news classification, multimedia (sound

video) analysis

- bioinformatics - gene analysis, disease’s study

- time series identification - financial, meteorological, hydro,

- biomedicine signals, all possible engineering signal processing

- predictions - sales, TV audience share, investments needed, ..etc. 12/160

Few more examples:

• Banks: Fraud checks detection

• Google, Microsoft et al: Targeted advertising

• Supermarkets: Promotion planning

• Call centers: Speech recognition

• Scanners: Optical character recognition

• Web pages classification, Text categorization

• Post office: Zip code handwriting recognition

• Credit cards: Loan default prediction

• Stock market: Statistical arbitrage

• Drug design: Drug candidate screening

• Large Hadron Collider: Particle screening

• Airport scanner: Explosives, Drugs, Arm, Faces

13/160

Let’s first set the stage, there are three
(3) machine learning (ML) settings

• Supervised (pairs xi , yi are given for all data pairs, where
xi are the values of the independent variables, features,
inputs, attributes and yi are class labels)

• Semi-supervised (pairs xi, yi are given for just a fraction
of data pairs)

• Unsupervised (only inputs xi, are given and no single label
yi is known)

Here, we deal only with SUPERVISED ML problems!
14/160

y = -1 y = +1

y = -1 y = +1Supervised

Semi-supervised

Unsupervised

This seminar is all about the
supervised learning

15/160

Data sets variety

99.294100.242

0.636471.46431

0.31328-1.29241

99.729100.272

99.244102.262

99.692100.282

100.04101.072

-0.03596-0.662421

Mars magnetic
field

16/160

Supervised Machine Learning is
concerned by solving two (out of three)

classic statistics problems:

Classification (Pattern Recognition)

Regression (Curve, Surface, Fitting,
i.e., Function Approximation)

one more statistics’ problem, we will not be playing with
here, is the Density Estimation Problem

17/160

Classification (Pattern Recognition)
• Classification (Pattern Recognition) setting is as follows

You want your model, i.e., function implemented in software,
i.e., NN, i.e., Decision Function, i.e., SVM

to be trained on training data sets comprised of the training
pairs (xi, yi), and

to be used on the new, previously unseen inputs xi,in order
to recognize it i.e., classify it i.e., predict it.

xi is called an input vector of features, or just the feature
vector

yi is called the output, i.e., desired or target value, or just label

18/160

Training Phase:

w = g(x, y)

class label i = yi

Test, i.e.
Application,
Phase:

yi = i f(xi, w)

Y =

19/160

Hence, our data is given as:

11 12 1 1

21 21 2 2

1 2

1
1

, , or

1

n

n
Class Regress

l l ln l

x x x y
x x x y

x x x y

    
          
    
           

X Y Y





    



1st data pair

lst data pair

Check some data sets here: http://archive.ics.uci.edu/ml/datasets.html
20/160

Just one simple example:

• We are designing linear classifier by using
sum-of-error-squares cost (merit, loss,
fitness) function (norm). i.e. we work under
L2-norm

• A problem is 1-dimensional for visualization's
purposes only

• All the mathematics is same for any-
dimensional input vector x

21/160

Let’s solve a 1-dimensional problem

1 2 4 5

+1

-1

Training pairs (xi, yi) are given:

x=[1 2 4 5]’, y=[1 1 -1 -1]’

We are after decision function.
Assume linear one -> then we

are after weights (intercept and
slope)

*

1 1 1
2 1 1 0.6

, , ,
4 1 1 1.8
5 1 1

   
                  
      

X y w X y w

After, the training we can discard the training
data and given the new (test, application) data

yitest = xT
itestw, say for

x=[1.5 4.5 5.5], our model will predict right labels
y = sign([0.9 -0.9 -1.5]T)

1 2 4 5

+1

-1

sign = +1

sign = -1

Our model is
y = xTw

w = ?, unknown

22/160

Well, let’s go back to
our problem of classification.

Here we show what we can see,
meaning 1-dimensional or 2-

dimensional (1D or 2D) problems
(1D or 2D means the input

vector x is either 1D or 2D)

23/160

Feature 1

Class label,
Desired value, y

+1

-1

This is a very COMPLEX problem

f(w, x)

Let’s analyze a very low dimensional problem of classifying two classes based
on a single feature.

Thus, we believe that the Feature 1 only can be useful for classification!
Label classes as: y = +1 for class 1, y = -1 for class 2

What about solving such a complex NONLINEAR problem

There are many possibilities, and we’ll talk about them extensively!

Feature 1

Class label,
Desired value,

y
+1

-1

f(w, x)

signf(w, x)

This is an EASY problem

24/160

For two dimensional problem: classifying two classes based on 2 features, we
can show the decision function, but when number of features > 2, we deal with

HYPER-surfaces, that can not be seen. However, the algorithms can ‘see’ in
high-dimensional spaces and they will be the same.

Desired value y

Feature B

Feature A

+1

0

-1 d(x, w, b)

Input plane
(x1, x2)

Linear decision function

Input space of features

25/160

-4 -3 -2 -1 0 1 2 3 4
-2

0

2

4

6

8

10

12
Separation curve (SC) obtained by Gaussian RBF - redsolid, Margins - blue, Unknown SC yelldash

Feature 1, i.e., Input x1

Fe
at

ur
e

2,
 i.

e.
, I

np
ut

 x
2VERY OFTEN the decision

function and separating
boundary are NON-LINEAR

Indicator function (the
term Vapnik &

Chervonenkis use) is
just a

sign(Decision Function)
26/160

Regression (Curve, Surface, Fitting,
i.e., Function Approximation)

Linear
model

Non-linear
model

True, but unknown, function
Regression curve

Measured data points

27/160

0

0.5

1

-0.2

0

0.2

0.4
-0.1

0

0.1

0.2

0.3

0.4

X
Y

Z

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

-0.1

0

0.1

0.2

0.3

0.4

X

Y

Z

Linear regression (function approximation, surface
fitting) over two-dimensional input space

A view along the plane

28/160

And now, back to ML classic and
novel tools as well as to the
connections between them

In the rest of presentation we tightly follow The MIT Press
published book (Kecman, 2001), as well as our the most recent
results.

Check my book’s site http://www.support-vector.ws

for the newest paper’s and software’s downloads.

29/160

Some connections between

NNs i.e./or/and SVMs
and

classic techniques such as
Fourier series and

Polynomial approximations
30/160

F(x) = 


N

k
kk bothorkxborkxa

1
),cos(),sin(

BUT, what if we want to
learn the frequencies?

!!! NONLINEAR
LEARNING PROBLEM !!!

o = F(x)

V
is prescribed

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

4

n

Classic approximation techniques in NN graphical appearance
FOURIER SERIES

AMPLITUDES and PHASES of sine (cosine) waves are unknown,
but frequencies are known because

Mr. Joseph Fourier has selected frequencies for us -> they are
INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR!!!

It is ‘same’

with POLYNOMIALS

31/160

-2 -1 0 1 2 3 4 5
0

50

100

150

200

250

Weight w = [A; w]

 C
os

t
fu

m
ct

io
n

 J

The cost function J dependence upon A (dashed) and w (solid)

Now, we want to find Fourier ‘series’ model o = w2sin(w1x) of the underlying
dependency y = 2.5 sin(1.5x), known to us but not to the learning machine
(algorithm).

x o d-netHL

oHL

net

o

w2w1

We know that the function is sinus but we don’t know its frequency and amplitude. Thus, by using
the training data set {x, d}, we want to model this system with the NN model consisting of a single
neuron in HL (having sinus as an activation function) as given above.

A = w2

w = w1

J = sum(e2) = sum(d - o)2

sum(d - w2sin(w1x))2

-2
0

2
4

6

-2
0

2
4

6
0

100

200

300

400

500

Amplitude AFrequency w

 C
os

t
fu

m
ct

io
n

 J

32/160

Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi



N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V
is prescribed

33/160

Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi



N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V
is prescribedWith a prescribed

(integer) exponents
this is again LINEAR

APPROXIMATION
SCHEME. Linear in

terms of parameters
to learn and not in

terms of the resulting
approximation

function. This one is
NL function for i > 1.

34/160

Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi



N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V
is prescribed

The following
approximation scheme
is a ‘novel’ ONE called

RBF network here.

With a prescribed
(integer) exponents
this is again LINEAR

APPROXIMATION
SCHEME. Linear in

terms of parameters
to learn and not in

terms of the resulting
approximation

function. This one is
NL function for i > 1.

35/160

Approximation of
some

NL 1D function by

Gaussian

Radial Basis Function

(RBF)

In 1-D case forget
these two inputs.

They are here just to
denote that the basic
structure of the NN is

the same for ANY-
DIMENSIONAL

INPUT

0

1

2

3

y F(x)

xcic2

i2

1 2 i i+1 i+2 N

**

*

*

* *

*
*

* *
*

* *
* * *

xk

yk

*

**

wi+1i+1, wi+1 > 0

wi+2i+2, wi+2 < 0

*
*

F(x)

o = F(x)

x1

xi

xn+1

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

)(w i

N

i
ii cx ,

1



 

36/160

0
10

0
10

20
30

40
0

2

4

6

8

APPROXIMATION OF SOME 2D NONLINEAR FCT

Approximation of some NL 2D function by

Gaussian Radial Basis Function (RBF)

Measurements

Images

Records

Observations

Data

For FIXED Gaussian RBFs a LEARNING FROM DATA is a LINEAR
PROBLEM. If the Centers and Covariance matrices are the subjects of
learning, the problem becomes NONLINEAR.

Read it - extremely difficult!

37/160

The learning machine that uses data to find the
APPROXIMATING FUNCTION (in regression

problems) or the SEPARATION BOUNDARY (in
classification, pattern recognition problems), is

the same in high-dimensional situations.

Here, it will be either the so-called SVM or the NN

(however remember, there are other models too).

38/160

The learning machine that uses data to find the
APPROXIMATING FUNCTION (in regression

problems) or the SEPARATION BOUNDARY (in
classification, pattern recognition problems), is

the same in high-dimensional situations.

Here, it will be either the so-called SVM or the NN

(however remember, there are other models too).

WHAT are DIFFERENCES and SIMILARITIES?

WHATCH CAREFULLY NOW !!!

39/160

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

This is a Neural Network,

wj j j jj

J
 (, ,)x c 

 1F(x) =

40/160

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 (, ,)x c 

 1F(x) =

41/160

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 (, ,)x c 

 1F(x) =

AND AGAIN !!!
42/160

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

This is a Neural Network,

wj j j jj

J
 (, ,)x c 

 1F(x) =

43/160

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 (, ,)x c 

 1F(x) =

44/160

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 (, ,)x c 

 1F(x) =

There is no difference

in a structure i.e., in a
representational capacity.

However, there is an important
difference in LEARNING.

45/160

Where is then the
BASIC DIFFERENCE

between
NNs and SVMs
coming from?

46/160

Well ! There are two fundamental
pieces in any ML modeling

• They are the questions of:

• the FORM

and

• the NORM

47/160

NORM
• covers – the type of the cost, i.e., merit, i.e.,

loss, i.e., fitness, i.e., objective, function which
is minimized over the parameters of interest
(here we call them weights, i.e. dual variables in
SVMs)

FORM
• covers – the type of the model and in particular

the type of the kernel (SVM), i.e., activation
(NN), i.e., basis (RBF), i.e., membership (FL)
function used

48/160

• ‘All’ our models in ML are same i.e. they are the

SUM OF THE WEIGHTED BASIS FUNCTIONS

FORM

1
() (, ,)J

j j j jj
f w


 x x c

Hence,

ONE MODEL = MANY MODELS
Polynomial approximations, Fourier expansions, NN, SVMs, wavelets, JPEG,
MPEG, Fuzzy Logic models, …, many others … they ALL are

49/160

• We use primarily (only) two cost functions (NORMS) in
ML which are a MINIMIZATION of the

• SUM OF ERROR SQUARES in OUTPUT space (linear
standard classifier, FFT, MLP NN and RBF NN)

and the

• MAXIMAL MARGIN in INPUT space expressed as a
MINIMIZATION of the SUM OF WEIGHTS SQUARES
(SVMs)

NORM

50/160

Norms (Loss Functions) of NNs and SVMs

A classic multilayer perceptron (MLP),
FFT, polynomial models

Regularization (RBF) NN

Support Vector Machines

In the last expression the SRM principle uses the VC dimension h
(defining model capacity) as a controlling parameter for minimizing

the generalization error E (i.e., risk R).



2

1 1

|| || (,)
P P

i i
i i Capacity of

machineClossenes to
data

E L f L h l 
 

     P


E d fi i

Closeness to datai

P

 

((,))x w 2

1

E d f fi i

Closeness to data Smoothnessi

P

  

((,)) || ||x w P2 2

1



51/160

Let’s say a little more about the very
basics of

the learning from data.

Note that you may find different names
for the L from D:

identification, estimation,
regression, classification, pattern

recognition, function approximation,
curve or surface fitting etc.

52/160

All these tasks used to be
solved previously.

Thus, THERE IS THE
QUESTION:

Is there anything new in
respect to the classic
statistical inference?

53/160

The classic regression and (Bayesian) classification statistical
techniques are based on the very strict assumption that probability

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three
fundamental assumptions:

54/160

The classic regression and (Bayesian) classification statistical
techniques are based on the very strict assumption that probability

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three
fundamental assumptions:

*Data can be modeled by a set of linear in parameter
functions; this is a foundation of a parametric paradigm in
learning from experimental data.

55/160

The classic regression and (Bayesian) classification statistical
techniques are based on the very strict assumption that probability

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three
fundamental assumptions:

*Data can be modeled by a set of linear in parameter
functions; this is a foundation of a parametric paradigm in
learning from experimental data.
*In the most of real-life problems, a stochastic component
of data is the normal probability distribution law, i.e., the
underlying joint probability distribution is Gaussian.

56/160

The classic regression and (Bayesian) classification statistical
techniques are based on the very strict assumption that probability

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three
fundamental assumptions:

*Data can be modeled by a set of linear in parameter
functions; this is a foundation of a parametric paradigm in
learning from experimental data.
*In the most of real-life problems, a stochastic component
of data is the normal probability distribution law, i.e., the
underlying joint probability distribution is Gaussian.
*Due to the second assumption, the induction paradigm for
parameter estimation is the maximum likelihood method
that is reduced to the minimization of the sum-of-errors-
squares cost function in most engineering applications.

57/160

All three assumptions of the classic statistical paradigm turned out
to be inappropriate for many contemporary real-life problems
(Vapnik, Chervonenkis, 1964 - 1998) due to the facts that:

58/160

All three assumptions of the classic statistical paradigm turned out
to be inappropriate for many contemporary real-life problems
(Vapnik, Chervonenkis, 1964 - 1998) due to the facts that:

*modern problems are high-dimensional, and if the underlying
mapping is not very smooth the linear paradigm needs an
exponentially increasing number of terms with an increasing
dimensionality of the input space X, i.e., with an increase in the
number of independent variables. This is known as ‘the curse of
dimensionality’,

59/160

All three assumptions of the classic statistical paradigm turned out
to be inappropriate for many contemporary real-life problems
(Vapnik, Chervonenkis, 1964 - 1998) due to the facts that:

*modern problems are high-dimensional, and if the underlying
mapping is not very smooth the linear paradigm needs an
exponentially increasing number of terms with an increasing
dimensionality of the input space X, i.e., with an increase in the
number of independent variables. This is known as ‘the curse of
dimensionality’,

*the underlying real-life data generation laws may typically
be very far from the normal distribution and a model-builder
must consider this difference in order to construct an
effective learning algorithm,

60/160

All three assumptions of the classic statistical paradigm turned out
to be inappropriate for many contemporary real-life problems
(Vapnik, Chervonenkis, 1964 - 1998) due to the facts that:

*modern problems are high-dimensional, and if the underlying
mapping is not very smooth the linear paradigm needs an
exponentially increasing number of terms with an increasing
dimensionality of the input space X, i.e., with an increase in the
number of independent variables. This is known as ‘the curse of
dimensionality’,

*the underlying real-life data generation laws may typically
be very far from the normal distribution and a model-builder
must consider this difference in order to construct an
effective learning algorithm,

*from the first two objections it follows that the maximum
likelihood estimator (and consequently the sum-of-error-squares
cost function) should be replaced by a new induction paradigm
that is uniformly better, in order to model non-Gaussian
distributions.

61/160

There is a real life fact

the probabilityprobability--density functionsdensity functions are TOTALLYTOTALLY unknown,

and there is the question

HOW TO PERFORM a distribution-free
REGRESSIONREGRESSION or CLASSIFICATIONCLASSIFICATION ?

Mostly, all we have are recorded EXPERIMENTAL DATAEXPERIMENTAL DATA (training
patterns, samples, observations, records, examples):

Data is high-dimensional and scarce (always too little data)!!!

High-dimensional spaces seem to be terrifyingly emptyterrifyingly empty and our
learning algorithms (i.e., machines) should be able to operate in such

spaces and to learn from such a sparse datalearn from such a sparse data.
There is an old saying that redundancy provides knowledge.

Stated simpler
the more data pairs we have the better results will be.

62/160

Terrifying emptiness and/or data sparsenessTerrifying emptiness and/or data sparseness

Just a first simple example

Imagine sampling some 1D y = f(x), 2D z = f(x, y), and 3D u = f(x, y, z),
functions and taking 10 samples on the domain (0, 1)!

Data points in 1D, 2D and 3D domains are less and less dense, and the
average distance between the points increases with the dimensionality!!!

x

x

y

x

y
z

63/160

Error Small sample Medium sample Large sample

Data size l

final error

noisy data set
noiseless data set

Dependency of the modeling error on the
training data set size

64/160

Thus, the main characteristics of all
MODERN problems is the mapping

between the high-dimensional spaces, but

where are HIGH-DIMENSIONAL
problems coming from?

Let’s exemplify this by the following
(extremely simple) pattern

recognition (classification) example!

65/160

Gender recognition problem: Are these two faces female or male?

F or
M?

M or
F?

66/160

Gender recognition problem: Are these two faces female or male?

F or
M?

M or
F?

There must be
something in the
geometry of our
faces. Here, 18
input variables,
features, were

chosen!

Problem from

Brunelli & Poggio,
1993.

67/160

CURSE of DIMENSIONALITY and SPARSITY OF DATA.

The newest promising tool FOR WORKING UNDER THESE CONSTRAINTS
are the SUPPORT VECTOR MACHINES based on the STATISTICAL

LEARNING THEORY (VLADIMIR VAPNIK and ALEKSEI CHERVONENKIS).

WHAT IS THE contemporary BASIC LEARNING PROBLEM???

LEARN THE DEPENDENCY (FUNCTION, MAPPING) from
SPARSE DATA, under NOISE, in HIGH DIMENSIONAL

SPACE!
Recall - the redundancy provides the knowledge!

A lot of data - ‘easy’ problem.
LET’S EXEMPLIFY

THE INFLUENCE OF A DATA SET SIZE ON THE
SIMPLEST RECOGNITION PROBLEM

BINARY CLASSIFICATION, i.e., DICHOTOMIZATION.
68/160

First, the simplest case – 1-dim feature (i.e. input),
generated by normal, Gaussian distribution

a) enough data b) sparse data

Sum of error squares will work in the left hand side graph, and it
will make BIG error in the right hand side one

69/160

How this algorithm works? X w = D

-1 1.0000
3 1.0000
5 1.0000
7 1.0000
8 1.0000
9 1.0000
11 1.0000
12 1.0000
14 1.0000
16 1.0000

1
1
1
1
1
-1
-1
-1
-1
-1

Note that a decision function here is

given as: yi = w1xi + w2

The solution here is given by

(we’ll show later why is it this way)

  1 *T T
 w X X X y X y

X* is known as the
pseudoinverse

w =

70/160

How the pseudoinverse solution
has actually been obtained?
Well, it is an old good math

technique for solving both over- and
under-determined systems.

However, be extremely cautious –
the very solutions for the two
different cases have entirely

different meanings!

71/160

Classical (non)Linear Regression (i.e., Classification)

 
     

 

1 1

1 1

1 1

1 1

1 1

1

1 1

,1 , 1

/*

ˆ

T
nm m n left mn

T T
mn nm m mn n

T T
mn nm m mn n

T T T T
mn nm mn nm m mn nm mn n

T T
m mn nm mn n

test test m m

X w y X

X X w X y

X X w X y

X X X X w X X X y

w X X X y

y X w

 















 

 

 

 

 

 

Pseudoinverse

NORMAL
SYSTEM

n = number of data, m = number of features, attributes, inputs

Usually, n > m ->
overdetermined system

But not always!!!

Check the differences in a
meaning of the solution w

72/160

In the case of an over-determined system
w results in a solution providing the
minimal sum of errors squares,

and you should look up into the meaning of
the solution w in the case of an under-

determined system.

Hint: There is an infinity of solutions: which one is
extracted by the pseudoinverse?

73/160
73

x1=[-1;3;5;7;8;9;11;12;14;16];
i1=ones(10,1);
x=[x1 i1]
d=[1 1 1 1 1 -1 -1 -1 -1 -1]
d=d'

w=pinv(x)*d
plot(x1(1:5),zeros(size(x1)/2,1),'bs',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',10)

hold on
plot(x1(6:10),zeros(size(x1)/2,1),'rs',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','r',...
'MarkerSize',10)

i2=1:1:14;
plot((w(1)*i2+w(2)),'--gs','LineWidth',4,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','y',...
'MarkerSize',2)

grid on

Matlab code for previous example

74/160
74

% linclass_lect_RS
close all, clear all
num_data_per_class = 5; shift=3;
% the smaller the shift of the means,
% the bigger overlapping of classes
x1=[randn(num_data_per_class,1);
randn(num_data_per_class,1)+shift];
i1=ones(2*num_data_per_class,1);
x=[x1 i1];
d=[ones(num_data_per_class,1);-ones(num_data_per_class,1)];
w=pinv(x)*d
plot(x1(1:num_data_per_class),zeros(num_data_per_class,1),'bs',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',10)

hold on
plot(x1(num_data_per_class+1:2*num_data_per_class),zeros(num_data_per_class,1),'r
s',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','r',...
'MarkerSize',10)

x2=[min(x1)-0.5:0.25:max(x1)+0.5]';i2=ones(length(x2),1);
plot(x2,[x2 i2]*w,'--gs','LineWidth',4,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','y',...
'MarkerSize',2)

grid on

-2 -1 0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5More general matlab code

75/160

However, what about this idea – draw the
decision boundary through the two ’closest’ points

from opposite classes

Actually, similar results will be obtained for SVMs,
where we don’t bother with the sum of error

squares in the output space 76/160

Let’s check now the 2-dimensional
input case, and

this is the last example where we can
represent the decision function

graphically.

Nevertheless, the algorithms will work
for any-dimensional input, but

following the results visually will not be
possible!!!

77/160

Decision function in 2-dim case is
shown below

Desired value y

Feature B, x2+1

0

-1
d (x, w, b)

Input plane

(x1 , x2)

Feature A, x1

Decision function (z)

z = w1x1 + w2x2 + w3 * 1

The separation boundary in
the input space

78/160

4 5 6 7 8 9 10
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

A simple example how a classic linear classifier
algorithm works: X D

5.7948 5.9797 1.0000
5.9568 5.2714 1.0000
5.5226 5.2523 1.0000
5.8801 5.8757 1.0000
5.1730 5.7373 1.0000
7.1365 7.6614 1.0000
7.0118 7.2844 1.0000
7.8939 7.4692 1.0000
7.1991 7.0648 1.0000
7.2987 7.9883 1.0000

1
1
1
1
1
-1
-1
-1
-1
-1

w = X* D wopt = [-0.5209 -0.5480 6.9731]T, and

the separation boundary equals

x2 = -0.951x1 + 12.725

79/160

Now, a motivation for
a maximal margin idea,

or

what to do when having only
sparse training data set (not too

many data)
80/160

CLASSIFICATION or PATTERN RECOGNITION EXAMPLE
Assume - Normally distributed classes, same covariance
matrices. Solution is ‘easy’ - decision boundary is linear
and defined by parameter w = X* D when there is
plenty of data (infinity). X* denotes the PSEUDOINVERSE.

d1 = -1

x1

x2

d2 = +1
x2 = w1x1 + w2

Note, this line is not a decision function. It is the intersection of
the decision function and input space called separation boundary.

Note, we are looking
into the input space

81/160

CLASSIFICATION or PATTERN RECOGNITION EXAMPLE
Assume - Normally distributed classes, same covariance
matrices. Solution is ‘easy’ - decision boundary is linear
and defined by parameter w = X* D when there is
plenty of data (infinity). X* denotes the PSEUDOINVERSE.

d1 = -1

x1

x2

d2 = +1
Note that this

solution follows
from the last two
assumptions in

classic inference!

Gaussian data and
minimization of the

sum-of-errors-
squares!

82/160

However, for a small sample -

Solution defined by w = X* D is NO LONGER GOOD ONE !!!

Because, for this data set we will obtain this separation line,

83/160

and,
for another data set we will obtain another separation line.
Again, for small sample -
a solution defined by w = X* D is NO LONGER GOOD ONE !!!

84/160

What is common for both separation lines the red and the blue one.

Both have a SMALL MARGIN.

WHAT’S WRONG WITH SMALL MARGIN? Look at the RED line!
It is very likely that the new examples (,) will be wrongly classified.

85/160

What is common for both separation lines the red and the blue one.

Both have a SMALL MARGIN.

WHAT’S WRONG WITH SMALL MARGIN? Look at the BLUE line!
It is very likely that the new examples (,) will be wrongly classified.

However, the question is

how to DEFINE and FIND

the

OPTIMAL SEPARATION
HYPERPLANE

GIVEN (scarce)

DATA SAMPLES ???

86/160

The STATISTICAL LEARNING THEORY IS DEVELOPED TO SOLVE

PROBLEMS of FINDING THE OPTIMAL SEPARATION HYPERPLANE

for small samples.

87/160

OPTIMAL
SEPARATION
HYPERPLANE

is the one that
has the

LARGEST
MARGIN

on given

DATA SET

The STATISTICAL LEARNING THEORY IS DEVELOPED TO SOLVE

PROBLEMS of FINDING THE OPTIMAL SEPARATION HYPERPLANE

for small samples.

88/160

One more intuitive presentation why the maximal margin idea may
be a good statistical approach follows on the next slide!

Note, however, that the intuition only does not qualify for, and
does not guarantee, a broad acceptance of a maximal margin

approach in a statistical learning.

There are both the strong theoretical proofs about the errors,
bounds and generalization properties of SVMs based on a

maximal margin idea, and convincing experimental
performances on various benchmark data sets..

89/160

SUPPORT VECTOR MACHINE

is a MAXIMAL MARGIN CLASSIFIER

• it aims at finding the separating hyperplane with the maximal
geometric margin (and not any one, which is the perceptron solution)

• WHY maximal margin?

Suppose we want to separate two linearly separable classes, and we
did it by two different decision functions.

Class 1, y = +1

Class 2, y = -1 Class 2, y = -1

Class 1, y = +1
Small

margin

Large
margin

x1x1

x2x2

Separating lines, i.e.,
decision boundaries,

i.e., ‘hyperplanes’

Thus, the larger the margin, the smaller the probability of misclassification! 90/160

There are two basic, constructive approaches to the minimization
of the right hand side of previous equations

(Vapnik, Chervonenkis 1964 - 1998):

-choose an appropriate structure (order of polynomials,
number of HL neurons, number of rules in the FL model)
and, keeping the confidence interval fixed in this way,
minimize the training error (i.e., empirical risk), or

-keep the value of the training error fixed (equal to zero or
equal to some acceptable level) and minimize the
confidence interval.

classic NNs implement the first approach (or some of its
sophisticated variants) and SVMs implement the second strategy.

In both cases the resulting model should resolve the trade-off
between under-fitting and over-fitting the training data.

The final model structure (order) should ideally
match the learning machines capacitylearning machines capacity with training data training data

complexitycomplexity.

91/160

SVMs

Let us do some more
formal,

meaning,

mathematical analysis of
SVMs learning!

92/160

We follow an idea of a gentle SVMs introductiongentle SVMs introduction, i.e., of a gradual gradual
proceedingproceeding from the ‘simple’ cases to the more complex ones!

1) Linear Maximal Margin Classifier for Linearly
Separable Data - no samples overlapping
(late 1960-ties and early 70-ties).

3) Nonlinear Classifier

2) Linear Soft Margin Classifier

for Overlapping Classes.

4) Regression by SV Machines that
can be both linear and nonlinear!

(1995)

(1992)

(1996)

93/160

1) Linear Maximal Margin Classifier for Linearly Separable Data

Binary classification - no samples overlapping

Given some training data

(x1, y1), . . ., (xl, yl), yi  {-1, +1}

find the function f(x, w0)  f(x, w) which best approximates the
unknown discriminant (separation) function y = f(x).

Linearly separable data
can be separated by in
infinite number of linear
hyperplanes that can be

written as

f(x, w) = wTx + b

The problem is: find the
optimal separating

hyperplane
94/160

1) Vapnik-Chervonenkis: Optimal separating hyperplane is the one with

MAXIMAL MARGIN !

This hyperplane is uniquely determined by the vectors on the
margin

the support vectors!
MARGIN IS DEFINED by

w as follows:

(Vapnik, Chervonenkis ‘74)

2M 
w

M

Proof for M is on the next two slides

95/160

The relation between the weight vector w and the margin M
Optimal separating hyperplane with the

largest margin intersects half-way
between the two classes.

Class 1, y = +1

Margin M

x1

x2

(wTx) + b = +1
(wTx) + b = 0

(wTx) + b = -1

Class 2, y = -1
w

x1

x2

x3

w

x1

x2

0

MD2 D1

a

b

The margin M that is to be maximized during the training stage is a projection,
onto the separating hyperplane’s normal (weight) vector direction, of a distance
between any two support vectors belonging to different classes. In the example
above this margin M can be found as follows:

96/160

M = (x1 – x2)w = (x1 – x3) w,

where the subscript w denotes the projection onto the weight vector w
direction. The margin M can now be found by using support vectors x1
and x2 as follows

D1 = ||x1||cos(), D2 = ||x2||cos() and M = D1 - D2,
where  and  are the angles between w and x1 and between w and x2
respectively as given on page 4 e.g.,

Substituting cosines into the expression for M above results in
M = (x1

Tw – x2
Tw) / ||w||

and by using the fact that x1 and x2 are support vectors satisfying
yj|wTxj + b| = 1, j = 1, 2, that is
wTx1 + b = 1 and wTx2 + b = -1

we finally obtain !!!!!!

1

1

cos()
|| |||| ||

T

T 
x w

x w

2M 
w

97/160

The optimal canonical separating hyperplane (OCSH), i.e., a separating
hyperplane with the largest margin (defined by M = 2 / ||w||), specifies
support vectors, i.e., training data points closest to it, which satisfy
yj[wTxj + b]  1, j = 1, NSV. At the same time, the OCSH must separate
data correctly, i.e., it should satisfy inequalities

yi[wTxi + b]  1, i = 1, l

where l denotes a # of training data and NSV stands for a # of SV. See
the next slide about the meaning of the inequality above!

Note that maximization of M means a minimization of ||w||.
Minimization of a norm of a hyperplane normal weight vector ||w|| =

leads to a maximization of a margin M.
Because sqrt(f) is a monotonic function, its minimization is equivalent
to a minimization of f .

Consequently, a minimization of norm ||w|| equals a minimization of

wTw = w1
2 + w2

2 + … + wn
2

and this leads to a maximization of a margin M.

2 2 2
1 2 ...T

nw w w   w w

98/160

Desired value y Indicator function iF(x, w, b) = sign(d)
Input x2

Input x1

The decision boundary or
separating line is an
intersection of d(x, w, b) and an
input plane (x1,x2); d=wTx +b=0

+1

0

-1

The optimal separating hyperplane d(x, w, b)
is an argument of indicator function

d(x, w, b)

Stars denote support vectors

Input plane
(x1, x2)

-5

-4

-3

-2

-1

0

+1

2

3

4

5

1 2 3 4 5

Input x1

Target y, i.e., d
The canonical hyperplane d(x, w, b) that is, for a 1-dim input, a canonical straight line.

The decision boundary that is, for a 1-dim input,
a point or a zero-order hyperplane.

d(x, k1w, k1b)

d(x, k2w, k2b)

The indicator function iF = sign(d(x, w, b)) is a stepwise function.
It is a SV machine output o.

The two dashed lines represent
decision functions that are not
canonical hyperplanes.
However, they do have the same
decision boundary as the
canonical hyperplane here.

1-D input

2-D input

99/160

Thus the problem to solve is:

minimize

J = wT w = || w ||2

subject to constraints

yi[wT xi + b]  1

and this is a classic QP problem with constraints
that ends in forming and solving of a primal and/or

dual Lagrangian. 100/160

Thus the problem to solve is:

minimize

J = wT w = || w ||2

subject to constraints

yi[wT xi + b]  1

and this is a classic QP problem with constraints
that ends in forming and solving of a primal and/or

dual Lagrangian.

MarginMargin

maximization!maximization!

CorrectCorrect

classification!classification!
Note that # of constraining inequalities = # of training data l

101/160

Now, from the one sphere of
mathematics (say, an

intuitive geometric one) we
should jump into the another

sphere,
into the sphere of a nonlinear

optimization (say, into an
algebraic sphere).

102/160

Basics of the General Optimization Problem

Optimize f(w)

Subject To (s.t.) g(w) = 0
w > 0, or w >= 0

LINEAR PROGRAMMING problem: when f(w) and g(w) are
linear and wi's > 0

INTEGER PROGRAMMING problem: when wi's should take
only integer values.

QUADRATIC PROGRAMMING problem f(w) quadratic,
g(w) is linear,

NONLINEAR PROGRAMMING problem, f(w) and g(w) are
general nonlinear functions!

103/160

How ones solve such QP problems with constraints:

Step 1) Forming a Primal Lagrangian in terms of primal (original)
variables w-s, b and -s (by an augmenting of the cost function by the
constraints multiplied by dual variables -s).

Step 2) Using the Karush-Kuhn-Tucker (KKT) conditions and forming a
Dual Lagrangian in terms of -s only.

Step 3) Solving a Dual Lagrangian for -s.

Step 4) Using the KKT conditions for calculation of primal variables w-s
and b.

Step 5) Creating the decision function for a classification problem, or the
regression one for the function approximation task.

Step 6) Applying the SVM’s model obtained.
104/160

A QP problem J = wT w = || w ||2, subject to constraints yi[wT xi + b]  1
is solved by the saddle point of the Lagrange functional (Lagrangian).
(In forming the Lagrangian for constraints of the form gi > 0, the inequality constraints equations are multiplied by
nonnegative Lagrange multipliers ai (i.e., ai > 0) and subtracted from the objective function).

Step 1) Thus, a primal variables Lagrangian L(w, b, ) is,

L(w, b, ) =

where the i are Lagrange multipliers. The search for an optimal saddle
point (wo, bo, 0) is necessary because Lagrangian L must be minimized
with respect to w and b, and has to be maximized with respect to
nonnegative i (i.e., maximal i  0 should be found). This problem can
be solved either in a primal space (which is the space of parameters w
and b) or in a dual space (which is the space of Lagrange multipliers i).

The second approach gives insightful results and we will consider this
solution in a dual space below. In order to do that, we use the Karush-Kuhn-
Tucker (KKT) conditions for the optimum of a constrained function.

1

1 { [] 1}
2

l
T T

i i i
i

y b


  w w w x

105/160

Step 2) Karush-Kuhn-Tucker (KKT) conditions are:

- at the saddle point (wo, bo, o), derivatives of Lagrangian L with respect
to primal variables should vanish which leads to,

- and, in addition, the complementarity conditions

i{yi[wTxi + b]-1}= 0, i = 1, l.

must be satisfied.
Substituting (a) and (b) in a primal variables Lagrangian L(w, b, ) (on
previous page), we change to the dual variables Lagrangian Ld()

Step 2-3) Ld() =
1 , 1

1
2

l l
T

i i j i j i j
i i j

y y 
 

  x x

1
0, i.e.,

l

o i i i
io

L y



 

 w x
w

1
0, i.e., 0

l

i i
io

L y
b





 

 

(a)

(b)

106/160

Step 3) Such a standard quadratic optimization problem can be
expressed in a matrix notation and formulated as follows:

Maximize

Ld() = -0.5TH  + 1T,

subject to

yT = 0, Note that there are 1 equality constraint here

  0, Note that there are l inequality constraints here

where, H denotes the Hessian matrix (Hij =yiyj(xixj) = yiyjxT
ixj) of this

problem and 1 is a unit vector 1 = [1 1 . . . 1]T.

Some standard optimization programs typically minimize given objective function.
Obviously, we can apply such programs and the same solution would be obtained if we

minimize
Ld() = 0.5TH - 1T,

subject to the same constraints namely
yT = 0,   0.

107/160

Step 4) Solutions oi of the dual optimization problem above determine
the parameters of the optimal hyperplane wo (according to (a)) and bo
(according to the complementarity conditions) as follows,

NSV denotes the number of support vectors. Note that an optimal weight
vector wo, the same as the bias term b0, is calculated by using support
vectors only. This is because Lagrange multipliers for all non-support
vectors equal zero (oi = 0, i = NSV + 1, l). Finally, having calculated wo
and bo we obtain a decision hyperplane d(x) and an indicator function iF
= o = sign(d(x)) as given below
Step 5-6)

d(x) = , iF = o = sign(d(x)).

1

, 1,
SVN

o o i i SVi
i

y i N


 w x

SV1

1 1((), = 1, .freeSVN T
o s os

freeeSV s

b s N
N y

  x w

1 1

l l T
oi i o i i i oi i

w x b y b
 

    x x

For b, we use only FREE, i.e.,
unbounded, SVecs for which

0 i C 

All Support Vectors

Remember this scalar product

Story about C comes in few slides!!!

108/160

Both the beauty and the power of working
with SVMs can be seen below too

My Springer book, page 30

109/160

However, the previous algorithm will not work for linearly NOT
separable classes i.e., in the case when there is data overlapping

as shown below

There is no single hyperplane that can perfectly separate all data!

But, separation can now be done in two ways:

• 1) allow some misclassified data
• 2) try to find NONLINEAR separation boundary 110/160

2) Linear Soft Margin Classifier for Overlapping Classes

(allowing misclassification)

Possible idea!

Minimize

where C is a penalty parameter, trading off the margin size for
the number of misclassified data points. Large C leads to small
number of misclassification and bigger margin and vice versa.

HOWEVER!!! There is a serious problem! Counting errors can’t be
accommodated within the NICE (meaning reliable, well understood
and well developed) quadratic programming approach.
Also, it doesn’t distinguish between disastrous errors and near
misses)!

1 (#)
2

T C of training errorsw w

SOLUTION! Minimize1 ()
2

T C distance of error points to their correct sidew w

111/160

2) Linear Soft Margin Classifier for Overlapping Classes

Now one minimizes:

s.t. wTxi + b  +1 - i, for yi = +1,
wTxi + b  -1 + i, for yi = -1.

The problem is no longer convex and the solution is given by the saddle
point of the primal Lagrangian Lp(w, b, , , ) where i and i are the
Lagrange multipliers. Again, we should find an optimal saddle point (wo,
bo, o, o, o) because the Lagrangian Lp has to be minimized with
respect to w, b and , and maximized with respect to nonnegative i and
i.

1

1(,) ()
2

l
T k

i
i

J C 


  w w w

The solution is a hyperplane again. No
perfect separation however!

See in the book the details of the solution!
112/160

For overlapping classes dual problem
is formulated as

T1
d 2

1 1 1
max

N N N

i j i j i j i
i j i

L y y 
  

     
α

x x

1

0

0

i
N T

i i
i

C

y



 


 

  y

Ni ,,1 fors.t.

See in my Springer book the details of the solution!

This C is the NOVELTY
in respect to the hard

margin classifier

113/160

Hard vs. Soft Margin SVMs
an example on robustness

Class 2, y = -1

Class 1, y = +1

x1

x2

Hard Margin SVM
leads to small margin

Class 2, y = -1

Class 1, y = +1

x1

x2

Soft Margin SVM
leads to large margin



Use of penalty
parameter C here

114/160

QP setting of a LINEAR SVM learning problem:

HARD MARGIN:

PRIMAL: minimize J = wT w = || w ||2, s.t. yi[wT xi + b]  1!

DUAL: minimize s.t. i  0,

SOFT MARGIN:

DUAL: minimize s.t. C  i  0,

Learning is expressed in terms of training data and it depends only on
the scalar products of input patterns (xi

Txj).
Comments: Solving primal results in the same weight vector w as in the
dual solution, but ‘primal’ w is composed of all training data. Primal does
not select relevant points - support vectors (i.e., it does not compress the
information as the dual does). i > 0 only for SVs, in a dual setting!!!

Just a fraction of relevant data (SVs) composes a decision hyperplane.

1 , 1

1
2

l l
T

i i j i j i j
i i j

y y 
 

  x x
1

0l
i ii
y




1 , 1

1
2

l l
T

i i j i j i j
i i j

y y 
 

  x x
1

0l
i ii
y




115/160

What to do, and how to go about, when the
true decision function (i.e., separation

boundary) is NONLINEAR???

Remind, for example, that even if data are
generated by normal (Gaussian) distribution
but with different covariance matrices, the
true decision function will be a quadratic
function (see Example 1.10 on page 95, in

chapter 1 of my The MIT book)

Here the LINEAR SVM models
story ends!!!

116/1600 1 2 3 4 5

0

1

2

3

4

5

Feature x1

Feature x2

Nonlinear SV classification

Class 1
y = +1

Class 2
y = -1

Hence, the hyperplanes cannot be the solutions when the
decision boundaries are TRULY nonlinear, SAY AS IN THE CASE OF TWO
GAUSSIAN CLASSES HAVING DIFFERENT COVARIANCE MATRICES or AS IN THE

EXAMPLE SHOWN BELOW

117/160

Now, the SVM should be constructed by

i) mapping input vectors nonlinearly
into a high dimensional feature space and,

ii) by constructing the OCSH in the
high dimensional feature space.

Check my Springer Verlag book

for all the derivations!!!
118/160

Feature 1

Class label,
Desired value, y

+1

-1

This is a very COMPLEX problem

f(w, x)

Let’s analyze a very low dimensional problem of classifying two classes based
on a single feature.

Thus, we believe that the Feature 1 only can be useful for classification!
Label classes as: y = +1 for class 1, y = -1 for class 2

What about solving such a complex NONLINEAR problem

There are two possibilities:

Feature 1

Class label,
Desired value,

y
+1

-1

f(w, x)

signf(w, x)

This is an EASY problem

119/160

Feature 1

Class label,
Desired value,

y
+1

-1

Design a NONLINEAR f(w, x)

f(w, x)

1) Solve in original x domain

This is not a feasible approach

Design a LINEAR decision function in a NEW features plane.

Note that we do not see Class Labels here!

2) Map data into an
extended features’ domain

This is an RIGHT approach

Feature 1f(w, x) = 0

x2

f(w, x) = 0

Example 1:

120/160

d(x)x

x

x2

b

iF = sign(d(x))

An extension (mapping) of an input space x into the feature one [x x2] can be
given the graphical representation in the form of a ‘neural’ network below

The linear activation function
always means a summation

∑
+1

The thresholding shown
here is needed for a

classification only

w1

w2

121/160

Why may the mapping of input space X (x1, x2) into feature space F (f(x1), f(x2)) be useful?

Example 2: Nonlinear (quadratic) separation boundary in X (x1, x2) is transformed
into linear one in F (x1

2, x2) by (polynomial) mapping x1 into x1
2

-3 -2 -1 0 1 2 3
-2

0

2

4

6

8

10

12

x1

x 2

Using original input x1 , data are not linearly separable

0 1 2 3 4 5 6 7 8 9
-2

0

2

4

6

8

10

12

x1 = x 1
2

x 2

NL mapping of inputs leads to a linear separation boundary in a feature space

x1= x1
2

x1

x2

x2

122/160

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x 2

Using original input x1, data are not linearly separable

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

x1=sin(x1)

x 2

NL mapping of inputs leads to linear separation boundary in feature space

Example 3: Nonlinear (sinusoidal) separation boundary in X (x1, x2) is transformed
into linear one in F (sin(x1), x2) by (trigonometric) mapping x1 into sin(x1)

x1 = sin(x1)

x1

123/160

In both cases the mapping performed can be represented as the following
SVM i.e., NN

f1

f 2

x1

x2 w2

w1
S

o

Despite the fact that NL mapping works nicely, there are two basic
comments needed now:

a) We decided in advance which NL mapping to perform, for we knew
the nonlinearity. Generally we do not know the very character of
separation (hyper)surfaces and we will try to solve each problem with a
few standard mappings (polynomial and RBF Gaussian ones primarily).

b) The dimension of a feature space in two previous examples is same as
the one of the original input space. This is, however, not typical and we
will usually map input space into much richer space (space of the
much higher dimension, possibly into space of infinite dimension(!))

After the mapping  is
chosen, the linear margin
classifier, i.e., the SVM, is to
be designed in a feature
space with the hard, or soft
learning algorithms presented
so far!

124/160

Solution of a problem, regarding both the nonlinear mapping and a
dimensionality of the feature space (that is related to the number of

neurons in a hidden layer) used, is usually not unique.
Consider the simplest parity problem - XOR one:

0
1

1.5

1

1.5

Class 2

Class 1

Class 2

Class 1

This is a classic NONLINEARLY SEPARABLE problem! NO linear separation line!

We show solutions by using both a polynomial and an RBF approach.
Other polynomial and RBF solutions, as well as other NL ones are possible, too!!!

125/160

XOR problem - polynomial solution: f(x) = x1 + x2 - 2 x1 x2 - 1/3
Suppose mapping: y1 = x1, y2 = x2, y3 = x1 x2. It can be realized by the following NN.

x3 = +1 constant input, bias

1

1
-1/3

x1

x2

1

1

-1.5

y3 o

LAYERS
INPUT HIDDEN OUTPUT

-2

x3 = +1 , bias

1

-1/3

x1

x2

1

1
-1.5

y3 o

LAYERS
INPUT HIDDEN OUTPUT

-2

1

=

y1

y2

y3

1

0
1

-0 5 0 0 5 1 1 5
-0.5

0

0.5

1

1.5

f

f

f > 0

Feature space
F (x1, x2. f(x1, x2))

Original space
X (x1, x2)

126/160

XOR problem - Gaussian RBF solution. We choose two Gaussians
only, i.e., a dimension of a feature space is 2: c1 = [1 1]T and c2 = [0 0]T.

This is a following mapping: y = [exp(- ||x - c1|| 2) exp(- ||x - c2|| 2)]T. Hence, x -> y:

[0 0] -> [0.135 1], [1 1] -> [1 0.135], [1 0] -> [0.368 0.368], [0 1] -> [0.368 0.368].
The following NN, will produce linear separation boundary in a feature space and the NL one in the original space.

c11

c 22

x1

x2 1
1

S
o

c12

c21

-1

y1

y2

0
1

1.5

1

1.5

Class 2

Class 1

Class 1

y2

y1

Feature
space F (f(x1),

f(x2))

o = y1 + y2 - 1 = 0

0
1

1.5

1

1.5

Class 2

Class 1

Class 1

x2

x1

Original
space X

(x1, x2)

Class 2

o = exp(- ||x - c1|| 2) + exp(- ||x - c2|| 2 - 1=0

127/160

cont. XOR problem - Gaussian RBF solution;
The decision function o = exp(- ||x - c1|| 2) + exp(- ||x - c2|| 2 - 1, and its contours. The red one is for o = 0

o

128/160

d(x)

x1

x2

x3

1

w1

+1

1(x)

2(x)

3(x)

4(x)

5(x)

6(x)

7(x)

8(x)

9(x)

x1

x2

x3

(x1)2

x1x2

x2x3

x1x3

(x3)2

(x2)2

w9

b

x1

1

1

x2

x3

x2

x3

x1

Hyperplane in a feature
space F: d(z) = wTz + b

Second order polynomial
hypersurface d(x) in an input space

Mapping z = (x)

iF=sign(d(x))

SVMs arise from more
complex mapping of an n-
dimensional input vector x

= [x1 x2 … xn]T into a
feature vector z = (x).

129/160

Now, we apply a ‘kernel trick’.

One basic idea in designing nonlinear SV machines is to map input
vectors x   n into vectors z of a higher dimensional feature space F(z)
= (x) where  represents mapping:  n  f and to

solve a linear classification problem in this feature space

x   n  z(x) = [a11(x), a22(x), . . ., aff(x)]T   f

The solution for an indicator function iF(x) = sign(wTz(x) + b), which is a
linear classifier in a feature space F, will create a nonlinear separating
hypersurface in the original input space given by

iF(x) = sign

K(xi, xj) = zi
Tzj = T(xi)(xj).

Note that a kernel function K(xi, xj) is a function in input space.

(() ()) i i
T

i
i

l

y bz x z x

 

1

130/160

131/160

Kernel functions Type of classifier

K(x, xi) = [(xTxi) + 1]d Polynomial of degree d

Gaussian RBF

K(x, xi) = tanh[(xTxi) + b]* Multilayer perceptron
*only for certain values of b

The learning procedure is the same as the construction of a ‘hard’ and
’soft’ margin classifier in x-space previously.

Now, in z-space, the dual Lagrangian that should be maximized is

Ld() = or,

Ld() =`

K ei
i

T
i(,)

[() ()]
x x

x x x x


  1
2

1

  i
i

l

i j i j i
T

j
i j

l

y y
 
 

1 1

1
2

z z
,

  i
i

l

i j i j i j
i j

l

y y K
 
 

1 1

1
2

(,)
,

x x
L() = -0.5’H  + 1’,

H = Y’Y.*K
132/160

and the constraints are

i  0, i = 1, l

In a more general case, because of a noise or generic class’ features,
there will be an overlapping of training data points. Nothing but
constraints change as for the soft margin classifier above. Thus, the
nonlinear ‘soft’ margin classifier will be the solution of the quadratic
optimization problem given above subject to constraints

C  i  0, i = 1, l and

The decision hypersurface is given by

We see that the final structure of the SVM is equal to the NN model.
In essence it is a weighted linear combination of some kernel (basis)
functions. We’ll show this (hyper)surfaces in simulations later.

d y K bi i i
i

l

() (,)x x x 

 

1

 i i
i

l

y 

 0

1

133/160

In the case of NL SVMs we never, or only rarely,
calcu-late a weight vector w. Solving NL SVM is

performed in the so-called feature space which is of
a very high, including infinite, dimension. In fact we
don’t need w!!! Instead we use alphas as follows (in

S. Abe’s book):

where, U is a set of all free i.e., unbounded SVecs, and
S is a set of all SVecs

134/160

Regression

by

Support Vector
Machines

135/160

Comparisons of some popular regression schemes
d is a dimension of the model. For NL models it corresponds to the # of HL neurons, i.e., to the # of SVs!

The crucial difference between RNs and SVMs is in a loss function used! Note
that an application of Vapnik’s -insensitivity loss function L leads to QP
learning and to the sparse solution. Only a fraction of data points is important!
They are SVs! Data compression!

Method Functional to minimize Solution
Linear

regression
e2 = (y – f(x, w))2

d << l
f(x, w) = xTw

w = X+y
Ridge

regression
e2 = (y – f(x, w))2 + ||w||2

d << l
f(x, w) = xTw

w = (XXT + I)-1 XTy
RBF networks,
approximation

e2 = (y – f(x, w))2

d << l
f(x, w) = i=1,d wig(x - ci)

w = G+y, ci is predefined
RBF networks,
interpolation

e2 = (y – f(x, w))2

d = l
f(x, w) = i=1,l wig(||x - xi||)

w = G-1y, ci = xi

Regularization
Networks (RNs)

(y – f(x, w))2 + ||f||FS
2

d = l
f(x, w) = i=1,l wig(||x - xi||)

w = (G + I)-1y, ci = xi

SVMs L + ||f||FS
2

of SV << l
f(x, w) = i=1,l wig(||x - xi||)
w by QP, ci = xi, but note that

many wi = 0, SPARSENESS

136/160

Regression by SVMs
Initially developed for solving classification problems, SV techniques

can be successfully applied in regression, i.e., for a functional
approximation problems (Drucker et al, (1996), Vapnik et al, (1997)).

Unlike pattern recognition problems (where the desired outputs yi are discrete
values e.g., Boolean), here we deal with real valued functions.

Now, the general regression learning problem is set as follows;

the learning machine is given l training data from which it attempts to
learn the input-output relationship (dependency, mapping or function)

f(x).

A training data set D = {[x(i), y(i)]   n  , i = 1,...,l} consists of l
pairs (x1, y1), (x2, y2), …, (xl, yl), where the inputs x are n-dimensional

vectors x   n and system responses y  , are continuous values. The
SVM considers approximating functions of the form

1
(,) ()

N

i i
i

f v


x v x

137/160a) quadratic (L2 norm) b) absolute error (least modulus, L1 norm) c) -insensitivity

J J J

y - f(x, w)y - f(x, w) y - f(x, w)



Vapnik introduced a more general error (loss) function -
the so-called -insensitivity loss function

Thus, the loss is equal to 0 if the difference between the predicted f(x, w)
and the measured value is less than . Vapnik’s -insensitivity loss
function defines an  tube around f(x, w). If the predicted value is
within the tube the loss (error, cost) is zero. For all other predicted points
outside the tube, the loss equals the magnitude of the difference between
the predicted value and the radius  of the tube. See the next figure.

| - (,) |
if | - (,) |

| - (,) | - , otherwise.
y f

y f
y f

x w
x w

x w





0

138/160

x

y f(x, w)

Predicted f(x, w)
solid line




Measured

Measured

i

j
*

yi

yj

The parameters used in (1-dimensional) support vector regression.

139/160

Now, minimizing risk R equals

and the constraints are,
yi – wTxi - b   + i, i = 1, l,
wTxi + b - yi   + i*, i = 1, l,
i  0 i = 1, l,
i

*  0 i = 1, l,

where  and * are slack variables shown in previous figure for
measurements ‘above’ and ‘below’ an -tube respectively. Both slack
variables are positive values. Lagrange multipliers (that will be
introduced during the minimization) i and i

* corresponding to  and *

will be nonzero values for training points ‘above’ and ‘below’ an -tube
respectively. Because no training data can be on both sides of the tube,
either i or i

* will be nonzero. For data points inside the tube, both
multipliers will be equal to zero.

Rw w, , * || || 
 1

2
2 C

i

l

i

l *i i
  11

C

140/160

Similar to procedures applied to SV classifiers, we solve this constrained
optimization problem by forming a primal variables Lagrangian Lp(w, ,
*) Step 1

A primal variables Lagrangian Lp(wi, b, , *, , *, , *) has to be
minimized with respect to primal variables w, b,  and * and maximized
with respect to nonnegative LaGrange multipliers , *,  and *. This
problem can be solved again either in a primal space or in a dual one.
Below, we consider a solution in a dual space. Applying Karush-Kuhn-
Tucker (KKT) conditions for regression, we will maximize a dual
variables Lagrangian Ld(, *) Step 3

Ld(,*) =

subject to constraints

      
  
          () () ()()* * * *

,
i i

i

l

i i i
i

l

i i j j i
T

j
i j

l

y
1 1 1

1
2

x x

     
        i i i ii

l
i ii

l
i ib yw xT +

1 1
()* *

2
L b C y bp i i i i

T
i

l

i

l
i i i ii

l
(, - -Tw w w w x, , , , , ,)* * * * * *               

  1
11 1

141/160

0  i
* C i = 1, l,

0  i  C i = 1, l.

Note that a dual variables Lagrangian Ld(, *) is expressed in terms of
LaGrange multipliers  and * only, and that - the size of the problem,
with respect to the size of an SV classifier design task, is doubled now.

There are 2l unknown multipliers for linear regression and the Hessian
matrix H of the quadratic optimization problem in the case of regression
is a (2l, 2l) matrix.

The standard quadratic optimization problem above can be expressed
in a matrix notation and formulated as follows:
Maximize Step 3 in a matrix form

Ld() = -0.5TH  + fT,

subject to constraints above where for a linear regression,

G = [xTx + 1], f = [ - y1  - y2, . . .,  - yN,  + y1,  + y2, . . . ,  + y2N].

 ii

l
ii

l* 
  1 1

142/160

More interesting, common and challenging problem is to aim at
solving the nonlinear regression tasks. Here, similar as in the case of
nonlinear classification, this will be achieved by considering a linear
regression hyperplane in the so-called feature space.

Thus, we use the same basic idea in designing SV machines for
creating a nonlinear regression function.

We map input vectors x   n into vectors z of a higher dimensional
feature space F (z = (x) where  represents mapping:  n   f) and
we solve a linear regression problem in this feature space.

A mapping (x) is again chosen in advance. Such an approach again
leads to solving a quadratic optimization problem with inequality
constraints in a z-space. The solution for an regression hyperplane f =
wTz(x) + b which is linear in a feature space F, will create a nonlinear
regressing hypersurface in the original input space. In the case of
nonlinear regression, after calculation of LaGrange multiplier vectors 
and *, we can find an optimal desired weight vector of the kernels
expansion vo as Step 4

vo = * -  ,

143/160

and an optimal bias bo can be found from .

where g = G vo and the matrix G is a corresponding design matrix of
given RBF kernels.
Step 5
The best nonlinear regression hyperfunction is given by

z = f(x, v) = Gv + b.

There are a few learning parameters in constructing SV machines for
regression. The two most relevant are the insensitivity zone e and the
penalty parameter C that determines the trade-off between the training
error and VC dimension of the model. Both parameters should be
chosen by the user.

Generally, an increase in an insensitivity zone e has smoothing effects
on modeling highly noisy polluted data. Increase in e means a reduction
in requirements on the accuracy of approximation. It decreases the
number of SVs leading to data compression too. See the next figures.

b
l

y go i ii

l
 

1
1
()

144/160

-4 -2 0 2 4-2

-1

0

1

2

3

4

x

y

One-dimensional support vector regression

-4 -2 0 2-2

-1

0

1

2

3

4

x

y

One-dimensional support vector regression

The influence of a insensitivity zone e on modeling quality. A
nonlinear SVM creates a regression function with Gaussian kernels and
models a highly polluted (25% noise) sinus function (dashed). 17
measured training data points (plus signs) are used.

Left: e = 0.1. 15 SV are chosen (encircled plus signs).
Right: e = 0.5. 6 chosen SV produced a much better

regressing function.

145/160

Some of the constructive problems:
The SV training works almost perfectly for not too large data basis.
However, when the number of data points is large (say l > 2000) the QP
problem becomes extremely difficult to solve with standard methods. For
example, a training set of 50,000 examples amounts to a Hessian matrix H
with 2.5*109 (2.5 billion) elements. Using an 8-byte floating-point
representation we need 20,000 Megabytes = 20 Gigabytes of memory
(Osuna et al, 1997). This cannot be easily fit into memory of present standard
computers.
There are three, now classic, approaches that resolve the QP for large data sets.
Vapnik in (Vapnik, 1995) proposed the chunking method that is the
decomposition approach. Another decomposition approach is proposed in
(Osuna, Girosi, 1997). The sequential minimal optimization (Platt, 1997)
algorithm is of different character (works with 2 data points at the time) and it
seems to be an ‘error back propagation’ for a SVM learning.

The newest iterative single data (per-pattern) algorithm (Kecman, Vogt,
Huang, 2003; Huang, Kecman, 2004) seems to be the fastest for a huge data
sets (say, for more than a few hundred thousands data pairs) at the moment! 146/160

SVMs Linear Classification Learning Setting

α
xx max

11 1

T
2
1

d   
 

N

i
i

N

i

N

j
jijiji yyL 

0

0

1







N

i
ii

i

y

C



 Ni ,,1 

Dual Problem:

fors.t.

α
xx max)()())((

111 1

T
2
1

d  








 


i

N

i
ii

N

i
ii

N

i

N

j
jijjii yL 

Cii   ,0 Ni ,,1 

0)(
1





N

i
ii 

for

Dual
Problem:

s.t.

SVMs Linear Regression Learning Setting

1
() *

N i i T
i

i i i

y
f b


 



 
   

x x xFinal solution is:
classification

regression

147/160

Let us conclude the presentation of SVMs by summarizing the basic
constructive steps that lead to SV machine:

selection of the kernel function that determines the shape of
the decision and regression function in classification and
regression problems respectively,

selection of the ‘shape’, i.e., ‘smoothing’ parameter in the
kernel function (for example, polynomial degree and variance
of the Gaussian RBF for polynomials and RBF kernels
respectively),

choice of the penalty factor C and selection of the desired
accuracy by defining the insensitivity zone e,

solution of the QP problem in l and 2l variables in the case
of classification and regression problems respectively.

148/160

Let us conclude the part on a comparisons between the
SVMs and NNs

both the NNs and SVMs learn from experimental data,

both the NNs and SVMs are universal approximators in the
sense that they can approximate any function to any desired
degree of accuracy,

after the learning they are given with the same
mathematical model, as the sum of weighted basis (kernel)
functions, and they can be presented graphically with the
same so-called NN’s graph,

they differ by the learning method used. While NNs
typically use either EBP (or some more sophisticated gradient
descent algorithm) or some other linear algebra based
approach, the SVMs learn by solving the QP or LP problem.

149/160

Some additions

150/160

I’ve been talking mostly about SVMs, but what
are the alternatives?

Basic, the most popular and powerful, ones would be:
• The least squares classifiers, (Gauss and Legendre, ~ 200

years ago, today FFT and JPEG are still using it),

• Linear discriminant analysis, LDA (R.A. Fisher, 1936), for
multivariate normal distributions; it uses hyperplanes as
decision functions. A generalization of LDA is

• Quadratic discriminant analysis, which allows quadratic
decision functions. Both methods are still used by many
practitioners often with good success.

• k-nearest-neighbor, KNN, introduced in 1951; see Fox and
Hodges (1951, 1952). Many followers. It’s still in heavy use.
It was the first method for which universal consistency
was established; see Stone (1977)

151/160

• Cluster analysis is an UNsupervised approach to recognize clusters in
unlabeled data. Check the books by Hartigan (1975) and Kaufman and
Rousseau (2005) for an introduction to cluster analysis techniques. K-
means cluster analysis.

• Parametric logistic regression proposed by D. R. Cox to model binomial
distributed outputs; see Cox and Snell (1989). This method is based on
linear decision functions but does not make specific assumptions on the
distribution of the inputs. Parametric logistic regression is a special case
of generalized linear, see McCullagh and Nelder (1989). Hastie and
Tibshirani (1990) proposed a semi-parametric generalization called
generalized additive models where the inputs may influence the outputs in
an additive but not necessarily linear manner. The lasso (Tibshirani, 1996)
is a method for regularizing a least squares regression. It minimizes the
usual sum of squared errors, with a bound on the sum of the absolute
values of the coefficients.

• Other ‘classic’ methods for classification and regression are trees,
Breiman et al. (1984). Trees often produce not only accurate results but
are also able to uncover the predictive structure of the problem.

• Neural networks are non-linear statistical data modeling tools that can be
used to model complex relationships between inputs and outputs or to find
patterns in data sets. The motivation for neural networks, which were very
popular in the 1990s, goes back to McCullogh and Pitts (1943) and
Rosenblatt (1962). We refer also to Bishop (1996), Anthony and Bartlett
(1999), and Vidyasagar (2002).

152/160

• There also exist various other kernel-based methods.
For wavelets, we refer to Daubechies (1991), and for
splines to Wahba (1990). Recent developments for
kernel-based methods in the context of SVMs are also
described by Cristianini and Shawe-Taylor (2000),
Schoelkopf and Smola (2002), and Shawe-Taylor and
Cristianini (2004).

• Boosting algorithms are based on an adaptive
aggregation to construct from a set of weak learners a
strong learner; see Schapire (1990), Freund (1995), and
Freund and Schapire (1997). Finally, the books by Hastie
et al. (2001, 2009), Duda et al. (2001), and Bishop (2006)
give a broad overview of various techniques used in
statistical machine learning, whereas both Devroye et al.
(1996) and Gyoerfi et al. (2002) treat several
classification and regression methods in a
mathematically more rigorous way.

153/160

Now, some basics of a
Bias – Variance - Dilemma!

It is the must piece of the knowledge in
order to get an idea of the relationship
between the data, models and errors!

It will be intuitive, without math or any
equation and it will serve for warming up!
Check Kecman’s book (there are many

others better and more specialized too) if
you like math.

154/160

data

unknown
dependency

our model

Training and Generalization
Today, having powerful computers and good math software it is easy to be ‘great and

perfect’ on the training data set!

However, such a ‘greatness’ pays heavy price at unseen data, i.e., in a
generalization phase, or in use!!!

This is (deliberately chosen) extremely bad modeling, but real!
The same or similar phenomena will be present in the high dimensional cases, too!

y = f(x) = 0

True y = f(x)

For this, during the training unseen, input x the model gives y = f(x) = 0

155/160

One more example showing the perfect training results, but very bad generalization ones.

Note that all three models have the training error equal zero! Bias = 0! Perfect interpolants!

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

x

f(x)

Three different perfect interpolations of noise-free training data

xi

yi = f(xi)

156/160

And, still one more example, but now from the PATTERN RECOGNITION
(CLASSIFICATION) task, showing various models and their performances.

Note that the last model (learning machine) learns perfectly, i.e., separates all the training
data.

Or, this one

Central solution is of an intermediate capacity, separating most of the points,
without putting too much trust into any particular training data point!!!

On the left, the separation boundary is linear, and it misses not only the outliers,
but some ‘easy’ points. The solution on the right does not miss anything. By
having high capacity, it learns each data belongings ‘by heart’, but it is unlikely
that it will perform well on the new data, say this one

157/160

Obviously, we need much more
than being good (or even

excellent) on the training data set!

This ‘more’ means, we want that
our models perform well on all
future, previously unseen data,

generated by the same data
generator (i.e., plant, system,

process, probability distribution).
158/160

The whole statistical learning fights (optimizes) the following two curves!

Design parameters: e.g., order of polynomial, or the
number of fuzzy rules, or the number of neurons

BIAS Curve VARIANCE Curve

Generalization Error Curve
Error

Optimal parameters zone

Although the graph looks very simple, finding the optimal modeling parameters is an

EXTREMALY DIFFICULT task!!!

and, this is due to the following facts:

• we never (or, rarely only) know the underlying probability distribution, meaning the data
generation, function,

• we never know the space of (target) functions, or to which class of functions our f. belongs

• we always have scarce (insufficient, not enough) data,

• our data are always high- (or/and extremely high-) dimensional,

• there is always the noise, or data are corrupted

This curve is
a.k.a. an

EMPIRICAL
RISK (error)

This curve is
a.k.a. a

CONFIDENCE or
Estimation error

159/160

Bias & Variance
In modeling an unknown dependency (regression or discrimination
function), without knowledge of its mathematical form (target space), our
models (functions from hypothesis space) produce approximating
functions, which may be incapable of representing the target function
behavior.

A difference between the model output and
unknown target function is called the bias.

When there are not sufficient data, (or even if there appears to be sufficient
representative data, noise contamination can still contribute that) the sample
of data that is available for training may not be representative of average
data generated by the target function.

Consequently, there may be a difference between a network output for a
particular data set, and network function output for the average of all data
sets produced by the target function.

The square of this difference is called the variance.
160/160

High Bias - Low Variance Low Bias - High Variance

Good model designer would try to get medium
both the Bias and the Variance

