Institut Ruader Boskkovic

Contemporary Machine Learning

 i.e., Computational Intelligence, orClassic and Novel ML Tools

Greetings from VCU!!!
What is VCU and where is it???

- VCU stands for

VIRGINIA COMMONWEALTH UNIVERSITY

Rodney The Ram

Today I will make a gentle walk through ML approaches and techniques as
 follows:

- An Introduction into the area connecting classic tools with novel ones
- Focusing on the most powerful tool in ML today SVMs
- and, if time allows
- Advanced SVMs concepts and topics
- Basic experimental considerations
- Bias-Variance, Cross-Validation ALLOW THIS TORTURE!!!

SOME TOPICS

- Living in an ocean of data produced on daily basis what can, must, should humans do, right now?
a) stop collecting them
b) keep collecting the data and save them for future use
c) collect them and analyze whatever you can right now
- Avoid a drowning in data, while starving for knowledge
- Basic Model of Computational Intelligence (i.e., machine
learning) - The Sum of Weighted Basis Functions
- One model = Many models
- Quo wadis ML?
- Some Contemporary Tools
or, the problems to solve are a kind of this one: having the data points \circ find weights (parameters) which define a function assumed (here linear and quadratic ones are assumed)

In an real life, examples are same in character but much larger in both DIMENSIONS and NUMBERS

Today, we live surrounded by an OCEAN OF 'DATA'?

I mean ALL possible 'data' because, we and our devices are surrounded by all imaginable Measurements, images, sounds, smells, records, etc.

We produce data, transfer it, compress it, use it, process it, reuse it, filter it, etc

But primarily, we want to LEARN FROM DATA, a.k.a., examples, samples, measurements, records, observations, patterns

CLASSIC applications:

- increase in sleep depending on the drug,
- pulmonary function modeling by measuring oxygen consumption,
- head length and breadths of brothers,
- classification of the Brahmin, Artisan and Korwa caste based on physical measurements,
- biting flies (genus: Leptoconops) data for classification of the two species of flies,
- battery-failure data dependency and regression,
- various financial and market analysis (bankruptcy, stock market prediction, bonds, goods transportation cost data, production cost data, etc.),
- study of love and marriage regarding the relationships and feelings of couples,
- air pollution data classification, college test score classification and prediction, crude oil consumption modeling, closeness between 11 different languages, and so on.
(all of the above were linear models, taken from 30 years old statistics boq6fiko

[^0]Let's first set the stage, there are three
(3) machine learning (ML) settings

Supervised (pairs $\boldsymbol{x}_{i}, y_{i}$ are given for all data pairs, where x_{i} are the values of the independent variables, features, inputs, attributes and y_{i} are class labels)

Semi-supervised (pairs $\boldsymbol{x}_{\dot{j}} y_{i}$ are given for just a fraction of data pairs)

Unsupervised (only inputs $\boldsymbol{x}_{\dot{j}}$ are given and no single label y_{i} is known)

Here, we deal only with SUPERVISED ML problems!
13/160

Supervised Machine Learning is concerned by solving two (out of three) classic statistics problems:

Classification (Pattern Recognition)
Regression (Curve, Surface, Fitting, i.e., Function Approximation)
one more statistics' problem, we will not be playing with here, is the Density Estimation Problem

Classification (Pattern Recognition)

- Classification (Pattern Recognition) setting is as follows

You want your model, i.e., function implemented in software, i.e., NN, i.e., Decision Function, i.e., SVM
to be trained on training data sets comprised of the training pairs ($\mathrm{x}_{i}, \mathrm{y}_{\mathrm{i}}$), and
to be used on the new, previously unseen inputs \mathbf{x}_{i}, in order to recognize it i.e., classify it i.e., predict it.
\mathbf{x}_{i} is called an input vector of features, or just the feature vector
y_{i} is called the output, i.e., desired or target value, or just label

Just one simple example:

-We are designing linear classifier by using sum-of-error-squares cost (merit, loss, fitness) function (norm). i.e. we work under L_{2}-norm

- A problem is 1-dimensional for visualization's purposes only
- All the mathematics is same for anydimensional input vector \mathbf{x}

Let's solve a 1-dimensional problem

> Well, let's go back to our problem of classification.

Here we show what we can see, meaning 1-dimensional or 2dimensional (1D or 2D) problems (1D or 2D means the input vector x is either 1D or 2D)
Let's analyze a very low dimensional problem of classifying two classes based
on a single feature.

Thus, we believe that the Feature 1 only can be useful for classification!
Label classes as: $y=+1$ for class $1, y=-1$ for class 2

What about solving such a complex NONLINEAR problem
There are many possibilities, and we'll talk about them extensively!

For two dimensional problem: classifying two classes based on 2 features, we can show the decision function, but when number of features >2, we deal with HYPER-surfaces, that can not be seen. However, the algorithms can 'see' in high-dimensional spaces and they will be the same.

Linear decision function

Regression (Curve, Surface, Fitting, i.e., Function Approximation)

True, but unknown, function Regression curve Measured data points

And now, back to ML classic and novel tools as well as to the connections between them

In the rest of presentation we tightly follow The MIT Press published book (Kecman, 2001), as well as our the most recent results.

Check my book's site http://www.support-vector.ws
for the newest paper's and software's downloads.

Some connections between

NNs i.e./or/and SVMs
and

classic techniques such as Fourier series and Polynomial approximations

Classic approximation techniques in NN graphical appearance FOURIER SERIES

AMPLITUDES and PHASES of sine (cosine) waves are unknown,

 but frequencies are known becauseMr. Joseph Fourier has selected frequencies for us -> they are INTEGER multiplies of some pre-selected base frequency.

Another classic approximation scheme is a
POLYNOMIAL SERIES

Another classic approximation scheme is a

POLYNOMIAL SERIES

With a prescribed (integer) exponents this is again LINEAR APPROXIMATION SCHEME. Linear in terms of parameters to learn and not in terms of the resulting approximation
function. This one is NL function for $i>1$.

Another classic approximation scheme is a
POLYNOMIAL SERIES

With a prescribed (integer) exponents this is again LINEAR APPROXIMATION SCHEME. Linear in terms of parameters to learn and not in terms of the resulting approximation function. This one is NL function for $i>1$.

For FIXED Gaussian RBFs a LEARNING FROM DATA is a LINEAR PROBLEM. If the Centers and Covariance matrices are the subjects of learning, the problem becomes NONLINEAR.

Read it - extremely difficult!

The learning machine that uses data to find the APPROXIMATING FUNCTION (in regression problems) or the SEPARATION BOUNDARY (in classification, pattern recognition problems), is
the same in high-dimensional situations.
Here, it will be either the so-called SVM or the NN (however remember, there are other models too).

The learning machine that uses data to find the APPROXIMATING FUNCTION (in regression problems) or the SEPARATION BOUNDARY (in classification, pattern recognition problems), is
the same in high-dimensional situations.
Here, it will be either the so-called SVM or the NN (however remember, there are other models too).

WHAT are DIFFERENCES and SIMILARITIES?
WHATCH CAREFULLY NOW !!! !
and, this is a Support Vector Machine.

and, this is a Support Vector Machine.

Where is then the BASIC DIFFERENCE between
 NNs and SVMs coming from?

Well! There are two fundamental pieces in any ML modeling

- They are the questions of:
- the FORM
and
- the NORM

FORM

- covers - the type of the model and in particular the type of the kernel (SVM), i.e., activation (NN), i.e., basis (RBF), i.e., membership (FL) function used

NORM

- covers - the type of the cost, i.e., merit, i.e., loss, i.e., fitness, i.e., objective, function which is minimized over the parameters of interest (here we call them weights, i.e. dual variables in SVMs)

FORM

- 'All' our models in ML are same i.e. they are the

SUM OF THE WEIGHTED BASIS FUNCTIONS

$$
f(\mathbf{x})=\sum_{j=1}^{J} w_{j} \varphi_{j}\left(\mathbf{x}, \mathbf{c}_{j}, \Sigma_{j}\right)
$$

Hence,
ONE MODEL = MANY MODELS
Polynomial approximations, Fourier expansions, NN, SVMs, wave MPEG, Fuzzy Logic models, ..., many others ... they ALL are

NORM

- We use primarily (only) two cost functions (NORMS) in ML which are a MINIMIZATION of the
- SUM OF ERROR SQUARES in OUTPUT space (linear standard classifier, FFT, MLP NN and RBF NN)
and the
- MAXIMAL MARGIN in INPUT space expressed as a MINIMIZATION of the SUM OF WEIGHTS SQUARES (SVMs)

All these tasks used to be solved previously.

Thus, THERE IS THE QUESTION:
Is there anything new in respect to the classic statistical inference?

The classic regression and (Bayesian) classification statistical techniques are based on the very strict assumption that probability distribution models or probability-density functions are known.

Classic statistical inference is based on the following three fundamental assumptions:

The classic regression and (Bayesian) classification statistical techniques are based on the very strict assumption that probability distribution models or probability-density functions are known.

Classic statistical inference is based on the following three fundamental assumptions:
*Data can be modeled by a set of linear in parameter functions; this is a foundation of a parametric paradigm in learning from experimental data.

The classic regression and (Bayesian) classification statistica techniques are based on the very strict assumption that probability distribution models or probability-density functions are known.

Classic statistical inference is based on the following three fundamental assumptions:
*Data can be modeled by a set of linear in parameter
functions; this is a foundation of a parametric paradigm in learning from experimental data.
*In the most of real-life problems, a stochastic component of data is the normal probability distribution law, i.e., the underlying joint probability distribution is Gaussian.
*Due to the second assumption, the induction paradigm for parameter estimation is the maximum likelihood method that is reduced to the minimization of the sum-of-errorssquares cost function in most engineering applications.

All three assumptions of the classic statistical paradigm turned out to be inappropriate for many contemporary real-life problems (Vapnik, Chervonenkis, 1964-1998) due to the facts that:

All three assumptions of the classic statistical paradigm turned out to be inappropriate for many contemporary real-life problems (Vapnik, Chervonenkis, 1964-1998) due to the facts that:
*modern problems are high-dimensional, and if the underlying mapping is not very smooth the linear paradigm needs an exponentially increasing number of terms with an increasing dimensionality of the input space X, i.e., with an increase in the number of independent variables. This is known as 'the curse of dimensionality',

All three assumptions of the classic statistical paradigm turned out to be inappropriate for many contemporary real-life problems (Vapnik, Chervonenkis, 1964-1998) due to the facts that:
*modern problems are high-dimensional, and if the underlying mapping is not very smooth the linear paradigm needs an exponentially increasing number of terms with an increasing dimensionality of the input space X, i.e., with an increase in the number of independent variables. This is known as 'the curse of dimensionality'
*the underlying real-life data generation laws may typically be very far from the normal distribution and a model-builder must consider this difference in order to construct an effective learning algorithm,

All three assumptions of the classic statistical paradigm turned out to be inappropriate for many contemporary real-life problems (Vapnik, Chervonenkis, 1964-1998) due to the facts that:
*modern problems are high-dimensional, and if the underlying mapping is not very smooth the linear paradigm needs an exponentially increasing number of terms with an increasing dimensionality of the input space X, i.e., with an increase in the number of independent variables. This is known as the curse o dimensionality'
*the underlying real-life data generation laws may typically
be very far from the normal distribution and a model-builde must consider this difference in order to construct an effective learning algorithm,
*from the first two objections it follows that the maximum likelihood estimator (and consequently the sum-of-error-squares cost function) should be replaced by a new induction paradigm that is uniformly better, in order to model non-Gaussian distributions.

There is a real life fact

the probability-density functions are TOTALLY unknown, and there is the question HOW TO PERFORM a distribution-free REGRESSION or CLASSIFICATION?

Mostly, all we have are recorded EXPERIMENTAL DATA (training patterns, samples, observations, records, examples):
Data is high-dimensional and scarce (always too little data)!!!
High-dimensional spaces seem to be terrifyingly empty and our learning algorithms (i.e., machines) should be able to operate in such spaces and to learn from such a sparse data.
There is an old saying that redundancy provides knowledge. Stated simpler
the more data pairs we have the better results will be.

Terrifying emptiness and/or data sparseness
Just a first simple example
Imagine sampling some 1D $y=f(x), 2 \mathrm{D} z=f(x, y)$, and 3D $u=f(x, y, z)$, functions and taking 10 samples on the domain (0,1)!

Data points in 1D, 2D and 3D domains are less and less dense, and the average distance between the points increases with the dimensionality!!!

Thus, the main characteristics of all MODERN problems is the mapping between the high-dimensional spaces, but
where are HIGH-DIMENSIONAL problems coming from?

Let's exemplify this by the following (extremely simple) pattern recognition (classification) example!

Gender recognition problem: Are these two faces female or male? F or

Gender recognition problem: Are these two faces female or male?

The newest promising tool FOR WORKING UNDER THESE CONSTRAINTS
are the SUPPORT VECTOR MACHINES based on the STATISTICAL LEARNING THEORY (VLADIMIR VAPNIK and ALEKSEI CHERVONENKIS). WHAT IS THE contemporary BASIC LEARNING PROBLEM???
LEARN THE DEPENDENCY (FUNCTION, MAPPING) from SPARSE DATA, under NOISE, in HIGH DIMENSIONAL SPACE!
Recall - the redundancy provides the knowledge!

> A lot of data - 'easy' problem.
> LET'S EXEMPLIFY

THE INFLUENCE OF A DATA SET SIZE ON THE SIMPLEST RECOGNITION PROBLEM

BINARY CLASSIFICATION, i.e., DICHOTOMIZATION.

First, the simplest case - 1-dim feature (i.e. input), generated by normal, Gaussian distribution
a) enough data
b) sparse data

Sum of error squares will work in the left hand side graph, and it will make BIG error in the right hand side one

How the pseudoinverse solution has actually been obtained? Well, it is an old good math technique for solving both over- and under-determined systems. However, be extremely cautious the very solutions for the two different cases have entirely different meanings!

In the case of an over-determined system w results in a solution providing the minimal sum of errors squares,
and you should look up into the meaning of the solution w in the case of an underdetermined system.

Hint: There is an infinity of solutions: which one is extracted by the pseudoinverse?

However, what about this idea - draw the decision boundary through the two 'closest' points from opposite classes

Actually, similar results will be pbtained for SVMs, where we don't bother with the sum of error squares in the output space

Let's check now the 2-dimensional input case, and

 this is the last example where we can represent the decision function graphically.Nevertheless, the algorithms will work for any-dimensional input, but following the results visually will not be possible!!!

Now, a motivation for a maximal margin idea,

or
 what to do when having only sparse training data set (not too many data)

However, for a small sample -
Solution defined by $\mathrm{w}=\mathrm{X}^{*} \mathrm{D}$ is NO LONGER GOOD ONE !!!

What is common for both separation lines the red and the blue one.

Both have a SMALL MARGIN.

WHAT'S WRONG WITH SMALL MARGIN? Look at the RED line! It is very likely that the new examples \square, \square) will be wrongly classified.

What is common for both separation lines the red and the blue one.
Both have a SMALL MARGIN.
WHAT'S WRONG WITH SMALL MARGIN? Look at the BLUE line! It is very likely that the new examples \square, \square) will be wrongly classified.

The STATISTICAL LEARNING THEORY IS DEVELOPED TO SOLVE
PROBLEMS of FINDING THE OPTIMAL SEPARATION HYPERPLANE

One more intuitive presentation why the maximal margin idea may be a good statistical approach follows on the next slide!

Note, however, that the intuition only does not qualify for, and does not guarantee, a broad acceptance of a maximal margin approach in a statistical learning.

There are both the strong theoretical proofs about the errors, bounds and generalization properties of SVMs based on a maximal margin idea, and convincing experimental performances on various benchmark data sets..

SUPPORT VECTOR MACHINE is a MAXIMAL MARGIN CLASSIFIER

- it aims at finding the separating hyperplane with the maximal geometric margin (and not any one, which is the perceptron solution)

> -WHY maximal margin?

Suppose we want to separate two linearly separable classes, and we did it by two different decision functions

SVMs

Let us do some more formal,

meaning,

mathematical analysis of SVMs learning!

There are two basic, constructive approaches to the minimization of the right hand side of previous equations
(Vapnik, Chervonenkis 1964-1998):
-choose an appropriate structure (order of polynomials, number of HL neurons, number of rules in the FL model) and, keeping the confidence interval fixed in this way, minimize the training error (i.e., empirical risk), or
-keep the value of the training error fixed (equal to zero or equal to some acceptable level) and minimize the confidence interval.
classic NNs implement the first approach (or some of its sophisticated variants) and SVMs implement the second strategy. In both cases the resulting model should resolve the trade-off between under-fitting and over-fitting the training data.

The final model structure (order) should ideally match the learning machines capacity with training data
complexity.

1) Linear Maximal Margin Classifier for Linearly Separable Data Binary classification - no samples overlapping

Given some training data

$$
\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{l}, y_{i}\right), \quad y_{i} \in\{-1,+1\}
$$

find the function $f\left(\mathbf{x}, \mathbf{w}_{0}\right) \in f(\mathbf{x}, \mathbf{w})$ which best approximates the unknown discriminant (separation) function $y=f(\mathbf{x})$.

khearly separable data can be separated by in infinite number of linear hyperplanes that can be written as
$f(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}+b$
The problem is: find the optimal separating hyperplane 93/160

1) Vapnik-Chervonenkis: Optimal separating hyperplane is the one with
MAXIMAL MARGIN !

This hyperplane is uniquely determined by the vectors on the margin
the support vectors!
MARGIN IS DEFINED by

94/160

The margin M that is to be maximized during the training stage is a projection, onto the separating hyperplane's normal (weight) vector direction, of a distance between any two support vectors belonging to different classes. In the example above this margin M can be found as follows:

$$
M=\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)_{\mathbf{w}}=\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right)_{\mathbf{w}}
$$

where the subscript ${ }_{w}$ denotes the projection onto the weight vector \mathbf{w} direction. The margin M can now be found by using support vectors \mathbf{x}_{1} and \mathbf{x}_{2} as follows

$$
D_{1}=\left\|\mathbf{x}_{1}\right\| \cos (\alpha), D_{2}=\left\|\mathbf{x}_{2}\right\| \cos (\beta) \text { and } M=D_{1}-D_{2}
$$

where α and β are the angles between \mathbf{w} and \mathbf{x}_{1} and between \mathbf{w} and \mathbf{x}_{2} respectively as given on page 4 e.g.,

$$
\cos (\alpha)=\frac{\mathbf{x}_{1}^{T} \mathbf{w}}{\left\|\mathbf{x}_{1}^{T}\right\|\|\mathbf{w}\|}
$$

Substituting cosines into the expression for M above results in

$$
M=\left(\mathbf{x}_{1}{ }^{\boldsymbol{T}} \mathbf{w}-\mathbf{x}_{2}{ }^{\boldsymbol{T}} \mathbf{w}\right) /\|\mathbf{w}\|
$$

and by using the fact that \mathbf{x}_{1} and \mathbf{x}_{2} are support vectors satisfying

$$
y_{j}\left|\mathbf{w}^{\mathrm{T}} \mathbf{x}_{j}+b\right|=1, j=1,2, \text { that is }
$$

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{1}+b=1 \text { and } \mathbf{w}^{\mathrm{T}} \mathbf{x}_{2}+b=-1
$$

we finally obtain $\quad M=\frac{2}{\|\mathbf{w}\|} \quad$!!!!!!

The optimal canonical separating hyperplane (OCSH), i.e., a separating hyperplane with the largest margin (defined by $M=2 /\|w\|)$, specifies support vectors, i.e., training data points closest to it, which satisfy $y_{j}\left[\mathbf{w}^{\top} \mathbf{x}_{j}+b\right] \equiv 1, j=1, N_{S V}$. At the same time, the OCSH must separate data correctly, i.e., it should satisfy inequalities

$$
y_{i}\left[\mathbf{w}^{\top} \mathbf{x}_{i}+b\right] \geq 1, \quad i=1, I
$$

where I denotes a \# of training data and $N_{S V}$ stands for a \# of SV. See the next slide about the meaning of the inequality above!

Note that maximization of M means a minimization of $\|\mathbf{w}\|$.
Minimization of a norm of a hyperplane normal weight vector $\|w\|=$ $\sqrt{\mathbf{w}^{T} \mathbf{w}}=\sqrt{w_{1}^{2}+w_{2}^{2}+\ldots+w_{n}^{2}} \quad$ leads to a maximization of a margin M. Because sqrt(f) is a monotonic function, its minimization is equivalent to a minimization of f.

Consequently, a minimization of norm \|w\| equals a minimization of

$$
\mathbf{w}^{\top} \mathbf{w}=w_{1}^{2}+w_{2}^{2}+\ldots+w_{n}^{2}
$$

and this leads to a maximization of a margin M.

Thus the problem to solve is:
minimize

$$
J=\mathbf{w}^{\mathrm{T}} \mathbf{w}=\|\mathbf{w}\|^{2}
$$

subject to constraints

$$
y_{i}\left[\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b\right] \geq 1
$$

and this is a classic QP problem with constraints that ends in forming and solving of a primal and/or dual Lagrangian.
Thus the problem to solve is:
minimize

Correct classification!
$y_{i}\left[\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b\right] \geq 1$ Note that \# of constraining inequalities = \# of training data $/$
and this is a classic QP problem with constraints that ends in forming and solving of a primal and/or dual Lagrangian.

Now, from the one sphere of mathematics (say, an intuitive geometric one) we should jump into the another sphere,
into the sphere of a nonlinear optimization (say, into an algebraic sphere).

How ones solve such QP problems with constraints:
Step 1) Forming a Primal Lagrangian in terms of primal (original) variables $w-s, b$ and α-s (by an augmenting of the cost function by the constraints multiplied by dual variables $\alpha-s$).

Step 2) Using the Karush-Kuhn-Tucker (KKT) conditions and forming a Dual Lagrangian in terms of α-s only.

Step 3) Solving a Dual Lagrangian for α-s.
Step 4) Using the KKT conditions for calculation of primal variables w-s and b.

Step 5) Creating the decision function for a classification problem, or the regression one for the function approximation task.

Step 6) Applying the SVM's model obtained.

```
Optimize
Subject To (s.t.)
(w)
g(w)=0
    w}>\mathbf{0},\mathrm{ or }\mathbf{w}>=\mathbf{0
\begin{tabular}{ll} 
Optimize & \(f(\mathbf{w})\) \\
Subject To (s.t.) & \(g(\mathbf{w})=0\) \\
& \(\mathbf{w}>\mathbf{0}\), or \(\mathbf{w}>=0\)
\end{tabular}
```

LINEAR PROGRAMMING problem: when $f(\mathbf{w})$ and $g(\mathbf{w})$ are linear and w_{i} 's
INTEGER PROGRAMMING problem: when w_{i} 's should take only integer values.
QUADRATIC PROGRAMMING problem $f(w)$ quadratic,

NONLINEAR PROGRAMMING problem, $f(\mathbf{w})$ and $g(\mathbf{w})$ are general nonlinear functions!
Basics of the General Optimization Problem

```
A QP problem \(J=\mathbf{w}^{\mathrm{T}} \mathbf{w}=\|\mathbf{w}\|^{2}\), subject to constraints \(y_{i}\left[\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b\right] \geq 1\)
is solved by the saddle point of the Lagrange functional (Lagrangian).
(In forming the Lagrangian for constraints of the form \(g_{i}>0\), the inequality constraints equations are multiplied by
nonnegative Lagrange multipliers \(\alpha_{i}\) (i.e., \(\alpha_{i}>0\) ) and subtracted from the objective function).
Step 1) Thus, a primal variables Lagrangian \(L(\mathbf{w}, b, \alpha)\) is,
\[
L(\mathbf{w}, b, \boldsymbol{\alpha})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{i=1}^{l} \alpha_{i}\left\{y_{i}\left[\mathbf{w}^{T} \mathbf{x}_{i}+b\right]-1\right\}
\]
```

where the α_{i} are Lagrange multipliers. The search for an optimal saddle point ($\mathbf{w}_{o}, b_{o}, \alpha_{0}$) is necessary because Lagrangian L must be minimized with respect to \mathbf{w} and b, and has to be maximized with respect to nonnegative α_{i} (i.e., maximal $\alpha_{i} \geq 0$ should be found). This problem can be solved either in a primal space (which is the space of parameters \mathbf{w} and b) or in a dual space (which is the space of Lagrange multipliers α_{i}).

The second approach gives insightful results and we will consider this solution in a dual space below. In order to do that, we use the Karush-KuhnTucker (KKT) conditions for the optimum of a constrained function.

Step 2) Karush-Kuhn-Tucker (KKT) conditions are:

- at the saddle point $\left(\mathbf{w}_{o}, b_{o}, \alpha_{o}\right)$, derivatives of Lagrangian L with respect to primal variables should vanish which leads to,

$$
\begin{array}{rrr}
\frac{\partial L}{\partial \mathbf{w}_{o}}=0, & \text { i.e., } & \mathbf{w}_{o}=\sum_{i=1}^{l} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial L}{\partial b_{o}}=0, & \text { i.e., } \quad \sum_{i=1}^{l} \alpha_{i} y_{i}=0
\end{array}
$$

- and, in addition, the complementarity conditions

$$
\alpha_{i}\left\{y_{i}\left[\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b\right]-1\right\}=0, \quad i=1, l .
$$

must be satisfied.
Substituting (a) and (b) in a primal variables Lagrangian $L(\mathbf{w}, b, \alpha$) (on previous page), we change to the dual variables Lagrangian $L_{d}(\alpha)$

$$
\operatorname{step} 2-3) \quad L_{d}(\alpha)=\sum_{i=1}^{1} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{1} y_{i} y_{j} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}
$$

Step 3) Such a standard quadratic optimization problem can be expressed in a matrix notation and formulated as follows:

Maximize

$$
L_{d}(\alpha)=-0.5 \boldsymbol{\alpha}^{T} \mathbf{H} \boldsymbol{\alpha}+\mathbf{1}^{T} \boldsymbol{\alpha}
$$

subject to

$$
\begin{aligned}
& \mathbf{y}^{T} \boldsymbol{\alpha}=0, \text { Note that there are } 1 \text { equality constraint here } \\
& \boldsymbol{\alpha} \geq \mathbf{0},
\end{aligned}
$$

where, \mathbf{H} denotes the Hessian matrix $\left(H_{i j}=y_{i} y_{j}\left(\mathbf{x}_{i} \mathbf{x}_{j}\right)=y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)$ of this problem and $\mathbf{1}$ is a unit vector $\mathbf{1}=[11 \ldots 1]^{T}$
Some standard optimization programs typically minimize given objective function. Obviously, we can apply such programs and the same solution would be obtained if we minimize

$$
L_{d}(\alpha)=0.5 \boldsymbol{\alpha}^{T} \mathbf{H} \boldsymbol{\alpha}-\mathbf{1}^{T} \boldsymbol{\alpha}
$$

subject to the same constraints namely

$$
\mathbf{y}^{T} \boldsymbol{\alpha}=0, \quad \boldsymbol{\alpha} \geq \mathbf{0}
$$

Both the beauty and the power of working with SVMs can be seen below too

 Step 4) Solutions $\alpha_{o i}$ of the dual optimization problem above determinethe parameters of the optimal hyperplane \mathbf{w}_{o} (according to (a)) and b (according to the complementarity conditions) as follows,

$N_{S V}$ denotes the number of support vectors. Note that an optimal weight vector \mathbf{w}_{o}, the same as the bias term b_{0}, is calculated by using support vectors only. This is because Lagrange multipliers for all non-support vectors equal zero ($\left.\alpha_{o i}=0, i=N_{S V}+1, l\right)$. Finally, having calculated \mathbf{w}_{o} and b_{o} we obtain a decision hyperplane $d(\mathbf{x})$ and an indicator function i_{F} $=o=\operatorname{sign}(d(\mathbf{x}))$ as given below Step 5-6)

Rememper this scalar product

$$
d(\mathbf{x})=\sum_{i=1}^{l} w_{o i} x_{i}+b_{o}=\sum_{i=1}^{l} y_{i} \alpha_{i} \mathbf{x}_{i}^{T} \mathbf{x}+b_{o} \quad i_{F}=o=\operatorname{sign}(d(\mathbf{x})) .
$$

My Springer book, page 30

However, the previous algorithm will not work for linearly NOT separable classes i.e., in the case when there is data overlapping as shown below

There is no single hyperplane that can perfectly separate all data!
But, separation can now be done in two ways:

- 1) allow some misclassified data
- 2) try to find NONLINEAR separation boundary

2) Linear Soft Margin Classifier for Overlapping Classes

(allowing misclassification)

Possible idea!
Minimize $\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C$ (\# of training errors)
where C is a penalty parameter, trading off the margin size for the number of misclassified data points. Large C leads to small number of misclassification and bigger margin and vice versa.
HOWEVER!!! There is a serious problem! Counting errors can't be accommodated within the NICE (meaning reliable, well understood and well developed) quadratic programming approach.
Also, it doesn't distinguish between disastrous errors and near misses)!

SOLUTION! Minimize
$\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C$ (distance of error points to their correct side) 110/160

2) Linear Soft Margin Classifier for Overlapping Classes

Now one minimizes: $J(\mathbf{w}, \xi)=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C($
$\left(\sum_{i=1}^{l} \xi_{i}\right)^{k}$

$$
\begin{array}{|lll}
\text { s.t. } & \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b \geq+1-\xi_{i}, & \text { for } y_{i}=+1, \\
& \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b \leq-1+\xi_{i}, & \text { for } y_{i}=-1 .
\end{array}
$$

The problem is no longer convex and the solution is given by the saddle point of the primal Lagrangian $L_{p}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ where α_{i} and β_{i} are the Lagrange multipliers. Again, we should find an optimal saddle point (\mathbf{w}_{o}, $b_{o}, \boldsymbol{\xi}_{o}, \boldsymbol{\alpha}_{o}, \boldsymbol{\beta}_{o}$) because the Lagrangian L_{p} has to be minimized with respect to \mathbf{w}, b and $\boldsymbol{\xi}$, and maximized with respect to nonnegative α_{i} and

For overlapping classes dual problem

 is formulated as$$
\begin{array}{ll}
L_{\mathrm{d}}= & -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+\sum_{i=1}^{N} \alpha_{i} \rightarrow \max _{\boldsymbol{\alpha}} \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \\
& \sum_{i=1}^{N} \alpha_{i} y_{i}=\alpha^{T} \mathbf{y}=0 \\
& \begin{array}{l}
\text { for } \\
\\
\end{array} \\
\begin{array}{l}
\text { in respect to the hard } \\
\text { margin classifier }
\end{array}
\end{array}
$$

See in my Springer book the details of the solution 1_{112160}^{1}

QP setting of a LINEAR SVM learning problem:

Here the LINEAR SVM models story ends!!!

What to do, and how to go about, when the true decision function (i.e., separation boundary) is NONLINEAR???

Remind, for example, that even if data are generated by normal (Gaussian) distribution but with different covariance matrices, the true decision function will be a quadratic function (see Example 1.10 on page 95, in chapter 1 of my The MIT book)

Now, the SVM should be constructed by
 i) mapping input vectors nonlinearly into a high dimensional feature space and,

ii) by constructing the OCSH in the high dimensional feature space.

Check my Springer Verlag book
for all the derivations!!!

Let's analyze a very low dimensional problem of classifying two classes based on a single feature.

Thus, we believe that the Feature 1 only can be useful for classification!

$$
\text { Label classes as: } y=+1 \text { for class } 1 \text {, }
$$

What about solving such a complex NONLINEAR problem

Example 1:

Design a LINEAR decision function in a NEW features plane.

An extension (mapping) of an input space x into the feature one $\left[\begin{array}{ll}x & x^{2}\end{array}\right]$ can be
given the graphical representation in the form of a 'neural' network below

The thresholding shown here is needed for a classification only

$d(x)$

The linear activation function always means a summation

Why may the mapping of input space $\mathbf{X}\left(x_{1}, x_{2}\right)$ into feature space $\mathbf{F}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ be useful?
Example 2: Nonlinear (quadratic) separation boundary in $\mathbf{X}\left(x_{1}, x_{2}\right)$ is transformed into linear one in $F\left(x_{1}{ }^{2}, x_{2}\right)$ by (polynomial) mapping x_{1} into $x_{1}{ }^{2}$

NL mapping of inputs leads to a unear separation boundary in a feature space
X_{2}

Example 3: Nonlinear (sinusoidal) separation boundary in $\mathrm{X}\left(x_{1}, x_{2}\right)$ is transformed into linear one in $\mathrm{F}\left(\sin \left(x_{1}\right), x_{2}\right)$ by (trigonometric) mapping x_{1} into $\sin \left(x_{1}\right)$

122/160

Solution of a problem, regarding both the nonlinear mapping and a dimensionality of the feature space (that is related to the number of neurons in a hidden layer) used, is usually not unique.
Consider the simplest parity problem - XOR one:

This is a classic NONLINEARLY SEPARABLE problem! NO linear separation line!
We show solutions by using both a polynomial and an RBF approach.
Other polynomial and RBF solutions, as well as other NL ones are possible, to $2 \mathbf{2} 4 / 160$

XOR problem - Gaussian RBF solution. We choose two Gaussians only, i.e., a dimension of a feature space is 2: $c_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $c_{2}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}$. This is a following mapping: $\mathbf{y}=\left[\exp \left(-\left\|\mathbf{x}-\mathbf{c}_{1}\right\|^{2}\right) \quad \exp \left(-\left\|\mathbf{x}-\mathbf{c}_{2}\right\|^{2}\right)\right]^{T}$. Hence, $\mathbf{x}->\mathbf{y}$: [00 0] -> [lllll 0.1351$],\left[\begin{array}{ll}1 & 1\end{array}\right]->\left[\begin{array}{ll}1 & 0.135\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]->\left[\begin{array}{lll}0.368 & 0.368\end{array}\right],\left[\begin{array}{ll}0 & 1\end{array}\right]->\left[\begin{array}{lll}0.368 & 0.368\end{array}\right]$. The following NN, will produce linear separation boundary in a feature space and the NL one in the original space.

Now, we apply a 'kernel trick'.

One basic idea in designing nonlinear SV machines is to map input vectors $\mathbf{x} \in \mathfrak{R}^{n}$ into vectors \mathbf{z} of a higher dimensional feature space $F(\mathbf{z})$ $=\Phi(\mathbf{x})$ where Φ represents mapping: $\mathscr{R}^{n} \rightarrow \Re^{f}$ and to
solve a linear classification problem in this feature space

$$
\mathbf{x} \in \Re^{n} \rightarrow \mathbf{z}(\mathbf{x})=\left[a_{1} \phi_{1}(\mathbf{x}), a_{2} \phi_{2}(\mathbf{x}), \ldots, a_{f} \phi_{f}(\mathbf{x})\right]^{T} \in \Re^{f}
$$

The solution for an indicator function $i_{F}(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{z}(\mathbf{x})+b\right)$, which is a linear classifier in a feature space F, will create a nonlinear separating hypersurface in the original input space given by

$$
\begin{aligned}
& i_{F}(\mathbf{x})=\operatorname{sign}\left(\sum_{i=1}^{l} \alpha_{i} y_{i} \mathbf{z}^{T}(\mathbf{x}) \mathbf{z}\left(\mathbf{x}_{i}\right)+b\right) \\
& K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{z}_{i}{ }^{T} \mathbf{z}_{j}=\Phi^{T}\left(\mathbf{x}_{i}\right) \Phi\left(\mathbf{x}_{j}\right) .
\end{aligned}
$$

Note that a kernel function $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is a function in input space.

```
Let \(x \in \mathbb{R}^{2}\) ie
, there is an \(\mathbf{~}=\left[\begin{array}{lll}x_{1} & x_{2}\end{array}\right]^{1}\), and if we choose \(\boldsymbol{\Phi}(\mathbf{x})=\left[\begin{array}{lll}x_{1}^{2} & \sqrt{2} x_{1} x_{2} & x_{1}^{2}\end{array}\right]^{\top}\)
\(\boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}\left(\mathbf{x}_{j}\right)=\left[\begin{array}{llll}x_{i 1}^{2} & \sqrt{2} x_{i 1} x_{i 2} & x_{i 1}^{2}\end{array}\right]\left[\begin{array}{lll}x_{j 1}^{2} & \sqrt{2} x_{j 1} x_{j 2} & x_{j 1}^{2}\end{array}\right]^{T}\)
    \(=\left[x_{i 1}^{2} x_{j 1}^{2}+2 x_{i 1} x_{i 2} x_{j 1} x_{i 2}+x_{i 2}^{2} x_{j 2}^{2}\right]=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{2}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\), or
    \(K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{2}=\boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}\left(\mathbf{x}_{j}\right)\)
```

Note that in order to calculate the scalar product in a feature space $\boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}(\mathbf{x}$ we do not need to perform the mapping $\boldsymbol{\Phi}(\mathbf{x})=\left[x_{1}^{2} \sqrt{2} x_{1} x_{2} x_{1}^{2}\right]^{T}$ at all. In tead, we calculate this product directly in the input space by computing Interestingly, note also that other mappings such as an

$$
\hbar^{2} \rightarrow \hbar^{3} \text { mapping given by } \boldsymbol{\Phi}(\mathbf{x})=\left[\begin{array}{lll}
x_{1}^{2}-x_{2}^{2} & 2 x_{1} x_{2} & x_{1}^{2}+x_{2}^{2}
\end{array}\right] \text {, or an }
$$

$$
\Re^{2} \rightarrow \Re^{4} \text { mapping given by } \boldsymbol{\Phi}(\mathbf{x})=\left[\begin{array}{llll}
x_{1}^{2} & x_{1} x_{2} & x_{1} x_{2} & x_{2}^{2}
\end{array}\right]
$$

also accomplish the same task as $\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{2}$.
Now, assume the following mapping

$$
\boldsymbol{\Phi}(\mathbf{x})=\left[\begin{array}{llllll}
1 & \sqrt{2} x_{1} & \sqrt{2} x_{2} & \sqrt{2} x_{1} x_{2} & x_{1}^{2} & x_{2}^{2}
\end{array}\right] .
$$

i.e., there is an $\Re^{2} \rightarrow \pi^{5}$ mapping plus bias term as the constant $6^{\text {th }}$ dimen sion's value. Then the dot product in a feature space \mathcal{S} is given as

$$
\boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}\left(\mathrm{x}_{j}\right)=1+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2}+2 x_{i 1} x_{i 2} x_{j 1} x_{i 2}+x_{i 1}^{2} x_{j 1}^{2}+x_{i 2}^{2} x_{j 2}^{2}
$$

$$
=1+2\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)+\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{2}=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}+1\right)^{2}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \text {, or }
$$

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}+1\right)^{2}=\boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}\left(\mathbf{x}_{j}\right)
$$

Thus, the last mapping leads to the second order complete polynomial.
and the constraints are

$$
\alpha_{i} \geq 0, \quad i=1, l
$$

In a more general case, because of a noise or generic class' features, there will be an overlapping of training data points. Nothing but constraints change as for the soft margin classifier above. Thus, the nonlinear 'soft' margin classifier will be the solution of the quadratic optimization problem given above subject to constraints

$$
C \geq \alpha_{i} \geq 0
$$

$$
i=1, l
$$

and

$$
\sum_{i=1}^{l} \alpha_{i} y_{i}=0
$$

The decision hypersurface is given by

$$
d(\mathbf{x})=\sum_{i=1}^{l} y_{i} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b
$$

We see that the final structure of the SVM is equal to the NN model.
In essence it is a weighted linear combination of some kernel (basis) functions. We'll show this (hyper)surfaces in simulations later.

In the case of NL SVMs we never, or only rarely, calcu-late a weight vector \mathbf{w}. Solving NL SVM is performed in the so-called feature space which is of a very high, including infinite, dimension. In fact we don't need w!!! Instead we use alphas as follows (in
S. Abe's book):

$$
\begin{gathered}
b=\frac{1}{|U|} \sum_{j \in U}\left(y_{j}-\sum_{i \in S} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right) \\
D(\mathbf{x})=\sum_{i \in S} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
\end{gathered}
$$

where, U is a set of all free i.e., unbounded SVecs, and S is a set of all SVecs

Regression

by

Support Vector Machines

Regression by SVMs

Initially developed for solving classification problems, SV techniques can be successfully applied in regression, i.e., for a functional approximation problems (Drucker et al, (1996), Vapnik et al, (1997)).
Unlike pattern recognition problems (where the desired outputs y_{i} are discrete values e.g., Boolean), here we deal with real valued functions.
Now, the general regression learning problem is set as follows;
the learning machine is given l training data from which it attempts to learn the input-output relationship (dependency, mapping or function)

$$
f(\mathbf{x})
$$

A training data set $D=\left\{[\mathbf{x}(i), y(i)] \in \Re^{n} \times \Re, i=1, \ldots, l\right\}$ consists of l pairs $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{l}, y_{l}\right)$, where the inputs \mathbf{x} are n-dimensional vectors $\mathbf{x} \in \Re^{n}$ and system responses $y \in \Re$, are continuous values. The SVM considers approximating functions of the form

$$
f(\mathbf{x}, \mathbf{v})=\sum_{i=1}^{N} v_{i} \varphi_{i}(\mathbf{x})
$$

Vapnik introduced a more general error (loss) function -
the so-called ε-insensitivity loss function-

$$
|y-f(\mathbf{x}, \mathbf{w})|_{\varepsilon}=\begin{array}{cc}
0 & \text { if }|y-f(\mathbf{x}, \mathbf{w})| \leq \varepsilon \\
|y-f(\mathbf{x}, \mathbf{w})|-\varepsilon, & \text { otherwise. }
\end{array}
$$

Thus, the loss is equal to 0 if the difference between the predicted $f(\mathbf{x}, \mathbf{w})$ and the measured value is less than ε. Vapnik's ε-insensitivity loss function defines an ε tube around $f(\mathbf{x}, \mathbf{w})$. If the predicted value is within the tube the loss (error, cost) is zero. For all other predicted points outside the tube, the loss equals the magnitude of the difference betyeen the predicted value and the radius ε of the tube. See the next fighre.

$\xrightarrow[c \text { e einsensitivity }]{ }$

The parameters used in (1-dimensional) support vector regression.

Similar to procedures applied to SV classifiers, we solve this constrained optimization problem by forming a primal variables Lagrangian $L_{p}(\mathbf{w}, \xi$, $\left.\xi^{*}\right)$ Step $1-$
$L_{p}\left(\mathbf{w}, b, \xi, \xi, \alpha_{i}, \alpha_{i}^{*}, \beta_{i}, \beta_{i}\right)=-\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{l} \xi+\sum_{i=1}^{l} \xi \quad-\sum_{i=1}^{l} \alpha_{i}^{*}\left[y_{i}-\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}-b+\varepsilon+\xi_{i}\right]$

$$
-\sum_{i=1}^{l} \alpha_{i}\left[\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}+b-y_{i}+\varepsilon+\xi_{i}\right]-\sum_{i=1}^{l}\left(\beta_{i}^{*} \xi_{i}^{*}+\beta_{i} \xi_{i}\right)
$$

A primal variables Lagrangian $L_{p}\left(w_{i}, b, \xi, \xi^{*}, \alpha, \alpha^{*}, \beta, \beta^{*}\right)$ has to be minimized with respect to primal variables \mathbf{w}, b, ξ and ξ^{*} and maximized with respect to nonnegative LaGrange multipliers $\alpha, \alpha^{*}, \beta$ and β^{*}. This problem can be solved again either in a primal space or in a dual one. Below, we consider a solution in a dual space. Applying Karush-KuhnTucker (KKT) conditions for regression, we will maximize a dual variables Lagrangian $L_{d}\left(\alpha, \alpha^{*}\right)$ Step 3

$$
L_{d}\left(\alpha, \alpha^{*}\right)=-\varepsilon \sum_{i=1}^{1}\left(\alpha_{i}^{*}+\alpha_{i}\right)+\sum_{i=1}^{1}\left(\alpha_{i}^{*}-\alpha_{i}\right) y_{i}-\frac{1}{2} \sum_{i, j=1}^{1}\left(\alpha_{i}^{*}-\alpha_{i}\right)\left(\alpha_{j}^{*}-\alpha_{j}\right) \mathbf{x}_{i}^{T} \mathbf{x}_{j}
$$

subject to constraints

$$
\begin{array}{ll}
\sum_{i=1}^{l} \alpha_{i}^{*}=\sum_{i=1}^{l} \alpha_{i} & \\
0 \leq \alpha_{i}^{*} \leq C & i=1, l, \\
0 \leq \alpha_{i} \leq C & i=1, l .
\end{array}
$$

Note that a dual variables Lagrangian $L_{d}\left(\alpha, \alpha^{*}\right)$ is expressed in terms of LaGrange multipliers $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}^{*}$ only, and that - the size of the problem, with respect to the size of an SV classifier design task, is doubled now.

There are $2 l$ unknown multipliers for linear regression and the Hessian matrix \mathbf{H} of the quadratic optimization problem in the case of regression is a $(2 l, 2 l)$ matrix.

The standard quadratic optimization problem above can be expressed in a matrix notation and formulated as follows:
Maximize Step 3 in a matrix form

$$
L_{d}(\alpha)=-0.5 \boldsymbol{\alpha}^{T} \mathbf{H} \boldsymbol{\alpha}+\mathbf{f}^{T} \boldsymbol{\alpha}
$$

subject to constraints above where for a linear regression,

$$
\mathbf{G}=\left[\mathbf{x}^{T} \mathbf{x}+1\right], \mathbf{f}=\left[\varepsilon-y_{1} \varepsilon-y_{2}, \ldots, \varepsilon-y_{N}, \varepsilon+y_{1}, \varepsilon+y_{2}, \ldots, \varepsilon+y_{2 N}\right] .
$$

where $\mathbf{g}=\mathbf{G} \mathbf{v}_{o}$ and the matrix \mathbf{G} is a corresponding design matrix of given RBF kernels.

Step 5

The best nonlinear regression hyperfunction is given by

$$
z=f(\mathbf{x}, \mathbf{v})=\mathbf{G} \mathbf{v}+b
$$

There are a few learning parameters in constructing SV machines for regression. The two most relevant are the insensitivity zone \boldsymbol{e} and the penalty parameter \boldsymbol{C} that determines the trade-off between the training error and VC dimension of the model. Both parameters should be chosen by the user.

Generally, an increase in an insensitivity zone e has smoothing effects on modeling highly noisy polluted data. Increase in e means a reduction in requirements on the accuracy of approximation. It decreases the number of SVs leading to data compression too. See the next figures433160

More interesting, common and challenging problem is to aim at solving the nonlinear regression tasks. Here, similar as in the case of nonlinear classification, this will be achieved by considering a linear regression hyperplane in the so-called feature space.
Thus, we use the same basic idea in designing SV machines for creating a nonlinear regression function.

We map input vectors $\mathbf{x} \in \Re^{n}$ into vectors \mathbf{z} of a higher dimensional feature space $F\left(\mathbf{z}=\Phi(\mathbf{x})\right.$ where Φ represents mapping: $\left.\mathscr{R}^{n} \rightarrow \mathscr{R}^{f}\right)$ and we solve a linear regression problem in this feature space.
A mapping $\Phi(\mathbf{x})$ is again chosen in advance. Such an approach again leads to solving a quadratic optimization problem with inequality constraints in a \mathbf{z}-space. The solution for an regression hyperplane f $\mathbf{w}^{\mathrm{T}} \mathbf{z}(\mathbf{x})+b$ which is linear in a feature space F, will create a nonlinear regressing hypersurface in the original input space. In the case of nonlinear regression, after calculation of LaGrange multiplier vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}^{*}$, we can find an optimal desired weight vector of the kernels expansion \mathbf{v}_{o} as Step 4

$$
\mathbf{v}_{o}=\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}
$$

The influence of a insensitivity zone e on modeling quality. A nonlinear SVM creates a regression function with Gaussian kernels and models a highly polluted (25% noise) sinus function (dashed). 17 measured training data points (plus signs) are used.

Left: $\quad e=0.1 . \quad 15 \mathrm{SV}$ are chosen (encircled plus signs).
Right: $\boldsymbol{e}=\mathbf{0 . 5}$. $\quad \mathbf{6}$ chosen $S V$ produced a much better regressing function.

Some of the constructive problems:

The SV training works almost perfectly for not too large data basis.
However, when the number of data points is large (say $l>2000$) the QP problem becomes extremely difficult to solve with standard methods. For example, a training set of 50,000 examples amounts to a Hessian matrix \mathbf{H} with $2.5 * 10^{9}(2.5$ billion) elements. Using an 8-byte floating-point representation we need 20,000 Megabytes $=20$ Gigabytes of memory (Osuna et al, 1997). This cannot be easily fit into memory of present standard computers.
There are three, now classic, approaches that resolve the QP for large data sets. Vapnik in (Vapnik, 1995) proposed the chunking method that is the decomposition approach. Another decomposition approach is proposed in (Osuna, Girosi, 1997). The sequential minimal optimization (Platt, 1997) algorithm is of different character (works with 2 data points at the time) and it seems to be an 'error back propagation' for a SVM learning.

The newest iterative single data (per-pattern) algorithm (Kecman, Vogt, Huang, 2003; Huang, Kecman, 2004) seems to be the fastest for a huge data sets (say, for more than a few hundred thousands data pairs) at the momentico

SVMs Linear Classification Learning Setting
Dual Problem:

$$
\begin{aligned}
L_{\mathrm{d}}= & -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+\sum_{i=1}^{N} \alpha_{i}=\max _{\boldsymbol{\alpha}} \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C \quad \text { for } i=1, \ldots, N \\
& \sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{aligned}
$$

SVMs Linear Regression Learning Setting

Dual
Problem:

$$
\begin{aligned}
L_{\mathrm{d}}= & -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(\alpha_{i}-\alpha_{i}^{*}\right)\left(\alpha_{j}-\alpha_{j}^{*}\right) \mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}-\varepsilon \sum_{i=1}^{N}\left(\alpha_{i}+\alpha_{i}^{*}\right)+\sum_{i=1}^{N}\left(\alpha_{i}-\alpha_{i}^{*}\right) y_{i}=\max _{\alpha} \\
\text { s.t. } \quad & 0 \leq \alpha_{i}, \alpha_{i}^{*} \leq C \text { for } i=1, \ldots, N \\
& \sum_{i=1}^{N}\left(\alpha_{i}-\alpha_{i}^{*}\right)=0
\end{aligned}
$$

Final solution is: $f(\mathbf{x})=\sum_{i=1}^{N}\left\{\begin{array}{c}\alpha_{i} y_{i} \\ \alpha_{i}-\alpha_{i}^{*}\end{array}\right\} * \mathbf{x}_{i}^{T} \mathbf{x}+b \quad$ classification

Let us conclude the presentation of SVMs by summarizing the basic constructive steps that lead to $S V$ machine:

$>$ selection of the kernel function that determines the shape of the decision and regression function in classification and regression problems respectively,
$>$ selection of the 'shape', i.e., 'smoothing' parameter in the kernel function (for example, polynomial degree and variance of the Gaussian RBF for polynomials and RBF kernels respectively),
$>$ choice of the penalty factor C and selection of the desired accuracy by defining the insensitivity zone e,
$>$ solution of the QP problem in I and $2 l$ variables in the case of classification and regression problems respectively.

Let us conclude the part on a comparisons between the

 SVMs and NNsbboth the NNs and SVMs learn from experimental data,
$>$ both the NNs and SVMs are universal approximators in the sense that they can approximate any function to any desired degree of accuracy,
$>$ after the learning they are given with the same mathematical model, as the sum of weighted basis (kernel) functions, and they can be presented graphically with the same so-called NN's graph,
$>$ they differ by the learning method used. While NNs typically use either EBP (or some more sophisticated gradient descent algorithm) or some other linear algebra based approach, the SVMs learn by solving the QP or LP problem.

Some additions

Cluster analysis is an UNsupervised approach to recognize clusters in unlabeled data. Check the books by Hartigan (1975) and Kaufman and unlabeled data. Check the books by Hartigan (1975) and Kaufman and
Rousseau (2005) for an introduction to cluster analysis techniques. Kmeans cluster analysis.
Parametric logistic regression proposed by D. R. Cox to model binomial distributed outputs; see Cox and Snell (1989). This method is based on linear decision functions but does not make specific assumptions on the distribution of the inputs. Parametric logistic regression is a special case of generalized linear, see McCullagh and Nelder (1989). Hastie and Tibshirani (1990) proposed a semi-parametric generalization called generalized additive models where the inputs may influence the outputs in an additive but not necessarily linear manner. The lasso (Tibshirani, 1996) is a method for regularizing a least squares regression. It minimizes the usual sum of squared errors, with a bound on the sum of the absolute values of the coefficients.
Other 'classic' methods for classification and regression are trees, Breiman et al. (1984). Trees often produce not only accurate results but are also able to uncover the predictive structure of the problem.

- Neural networks are non-linear statistical data modeling tools that can be used to model complex relationships between inputs and outputs or to find patterns in data sets. The motivation for neural networks, which were very popular in the 1990s, goes back to McCullogh and Pitts (1943) and Rosenblatt (1962). We refer also to Bishop (1996), Anthony and Bartlett (1999), and Vidyasagar (2002).
\qquad

I' ve been talking mostly about SVMs, but what are the alternatives?
Basic, the most popular and powerful, ones would be:

- The least squares classifiers, (Gauss and Legendre, ${ }^{\sim} 200$ years ago, today FFT and JPEG are still using it),
- Linear discriminant analysis, LDA (R.A. Fisher, 1936), for multivariate normal distributions; it uses hyperplanes as decision functions. A generalization of LDA is
- Quadratic discriminant analysis, which allows quadratic decision functions. Both methods are still used by many practitioners often with good success.
- k-nearest-neighbor, KNN, introduced in 1951; see Fox and Hodges (1951, 1952). Many followers. It's still in heavy use. It was the first method for which universal consistency was established; see Stone (1977)

150/160

There also exist various other kernel-based methods. For wavelets, we refer to Daubechies (1991), and for splines to Wahba (1990). Recent developments for kernel-based methods in the context of SVMs are also described by Cristianini and Shawe-Taylor (2000), Schoelkopf and Smola (2002), and Shawe-Taylor and Cristianini (2004).
Boosting algorithms are based on an adaptive aggregation to construct from a set of weak learners a strong learner; see Schapire (1990), Freund (1995), and Freund and Schapire (1997). Finally, the books by Hastie et al. (2001, 2009), Duda et al. (2001), and Bishop (2006) give a broad overview of various techniques used in statistical machine learning, whereas both Devroye et al. (1996) and Gyoerfi et al. (2002) treat several classification and regression methods in a mathematically more rigorous way.

Now, some basics of a Bias - Variance - Dilemma!

It is the must piece of the knowledge in order to get an idea of the relationship between the data, models and errors!

It will be intuitive, without math or any equation and it will serve for warming up! Check Kecman's book (there are many others better and more specialized too) if you like math.

Training and Generalization

Today, having powerful computers and good math software it is easy to be 'great and perfect' on the training data set!

However, such a 'greatness' pays heavy price at unseen data, i.e., in a

For this, during the training unseen, input x the model gives $y=f(x)=0$
This is (deliberately chosen) extremely bad modeling, but real!
The same or similar phenomena will be present in the high dimensional cases,

And, still one more example, but now from the PATTERN RECOGNITION CLASSIFICATION) task, showing various models and their performances. Note that the last model (learning machine) learns perfectly, i.e., separates all the training

On the left, the separation boundary is linear, and it misses not only the outliers but some 'easy' points. The solution on the right does not miss.anything. By having high capacity, it learns each data belongings 'by heart', but it is unlikely that it will perform well on the new data, say this o oniẹ

Or, this on
Central solution is of an intermediate capacity, separating most of the points,
without putting too much trust into any particular training data point!! 156/160

Obviously, we need much more than being good (or even excellent) on the training data set!

This 'more' means, we want that our models perform well on all future, previously unseen data, generated by the same data generator (i.e., plant, system, process, probability distribution).

Bias \& Variance

In modeling an unknown dependency (regression or discrimination function), without knowledge of its mathematical form (target space), our models (functions from hypothesis space) produce approximating functions, which may be incapable of representing the target function behavior.

A difference between the model output and
unknown target function is called the bias.
When there are not sufficient data, (or even if there appears to be sufficient representative data, noise contamination can still contribute that) the sample of data that is available for training may not be representative of average data generated by the target function.

Consequently, there may be a difference between a network output for a particular data set, and network function output for the average of all data sets produced by the target function.

The square of this difference is called the variance.

[^0]: Few more examples:
 Banks: Fraud checks detection
 Google, Microsoft et al: Targeted advertising
 Supermarkets: Promotion planning
 Call centers: Speech recognition
 Scanners: Optical character recognition
 Web pages classification, Text categorization
 Post office: Zip code handwriting recognition
 Credit cards: Loan default prediction
 Stock market: Statistical arbitrage
 Drug design: Drug candidate screening
 Large Hadron Collider: Particle screening
 Airport scanner: Explosives, Drugs, Arm, Faces

