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Greetings from VCU!!!
What is VCU and where is it???

• VCU stands for 
VIRGINIA COMMONWEALTH UNIVERSITY

and, the Commonwealth (i.e., State) of Virginia is here
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Richmond, capitol of 
Virginia (and of 
Confederacy in the Civil 
War) is here
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Rodney The Ram

and, the mascot of 
our athletic teams is 
Rodney the Ram
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Today I will make a gentle walk through 
ML approaches and techniques as 

follows:

• An Introduction into the area connecting classic tools with
novel ones

• Focusing on the most powerful tool in ML today SVMs
• and, if time allows

– Advanced SVMs concepts and topics
– Basic experimental considerations

• Bias-Variance, Cross-Validation 

DON’T WORRY. TIME WON’T 
ALLOW THIS TORTURE!!!
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SOME TOPICS

- Living in an ocean of data produced on daily basis what 
can, must, should humans do, right now?

a) stop collecting them
b) keep collecting the data and save them for future use
c) collect them and analyze whatever you can right now

- Avoid a drowning in data, while starving for knowledge
- Basic Model of Computational Intelligence (i.e., machine 

learning) - The Sum of Weighted Basis Functions
- One model = Many models
- Quo wadis ML ?
- Some Contemporary Tools 
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What is a Learning from Data, or
Data Mining, about?

• Mathematics in the last 3,000 years was playing with such 
models:

• A(r) = πr2 = w1 r2, v(h) = sqrt(2gh) = w1 sqrt(h) ,
• y = 3x – 2 = w1x + w2, z = -x + y – 3 = w1x + w2y + w3

Parameters wi of  the relations are known; given the
independent variable(s) one finds the dependent one(s)!

• TODAY; we want to learn the relation from the measured 
pairs (xi, yi) given as data sets, by infering i.e., learning the
UNKNOWN parameter values wi .

• This is an INVERSE PROBLEM stated as:
having the pairs (xi, yi) find the parameters wi, of the model. 

• In other words, LEARN the dependency between the xi and 
yi!
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or, the problems to solve are a kind of this one:
having the data points   find weights (parameters) 
which define a function assumed (here linear and 

quadratic ones are assumed)

xi

yi

In an real life, examples are same in character but 
much larger in both DIMENSIONS and NUMBERS
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I mean ALL possible ‘data’ because, we and our devices are 

surrounded  by all imaginable measurements, 
images, sounds, smells, records, etc.
We produce data, transfer it, compress it, use it, process it, reuse 

it, filter it, etc  .

But primarily, we want to LEARN FROM DATA, a.k.a., 
examples, samples, measurements, records,

observations, patterns

Today, we live surrounded by an OCEAN OF ‘DATA’?
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- battery-failure data dependency and regression,
- various financial and market analysis (bankruptcy, stock market
prediction, bonds, goods transportation cost data, production 
cost data, etc.),

- study of love and marriage regarding the relationships and 
feelings of couples,           

- air pollution data classification, college test score classification 
and prediction, crude oil consumption modeling, closeness  
between 11 different languages, and so on.

CLASSIC applications:

- increase in sleep depending on the drug, 
- pulmonary function modeling by measuring oxygen 
consumption,

- head length and breadths of brothers,
- classification of the Brahmin, Artisan and Korwa caste based  
on physical measurements,

- biting flies (genus: Leptoconops) data for classification of the 
two species of flies,

(all of the above were linear models, taken from 30 years old statistics books)
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TODAYS (primarily NON-linear) applications:

Note the following strong fact -> there is no field of human 
activities today, left untouched by learning from data!!!

Statistical learning is very, very hot nowadays - find patterns, 
identify, control, make prediction, make decisions, develop 
models, search, filter, compress, …, and some today’s applications 
are:

- computer graphics, animations,

- image analysis & compression, face detection, face recognition, 

- text categorization, media news classification, multimedia (sound   

video) analysis

- bioinformatics - gene analysis, disease’s study

- time series identification - financial, meteorological, hydro,  

- biomedicine signals, all possible engineering signal processing

- predictions - sales, TV audience share, investments needed, ..etc. 12/160

Few more examples:

• Banks: Fraud checks detection

• Google, Microsoft et al: Targeted advertising

• Supermarkets: Promotion planning

• Call centers: Speech recognition

• Scanners: Optical character recognition

• Web pages classification, Text categorization

• Post office: Zip code handwriting recognition

• Credit cards: Loan default prediction

• Stock market: Statistical arbitrage

• Drug design: Drug candidate screening

• Large Hadron Collider: Particle screening

• Airport scanner: Explosives, Drugs, Arm, Faces
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Let’s first set the stage, there are three 
(3) machine learning (ML) settings

• Supervised (pairs xi , yi are given for all data pairs, where 
xi are the values of the independent variables, features, 
inputs, attributes and yi are class labels)

• Semi-supervised (pairs xi, yi are given for just a fraction
of data pairs)

• Unsupervised (only inputs xi, are given and no single label 
yi is known)

Here, we deal only with SUPERVISED ML problems!
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y = -1 y = +1

y = -1 y = +1Supervised

Semi-supervised

Unsupervised

This seminar is all about the 
supervised learning
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Data sets variety

99.294100.242

0.636471.46431

0.31328-1.29241

99.729100.272

99.244102.262

99.692100.282

100.04101.072

-0.03596-0.662421

Mars magnetic 
field
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Supervised Machine Learning is 
concerned by solving two (out of three) 

classic statistics problems:

Classification (Pattern Recognition)

Regression (Curve, Surface, Fitting, 
i.e., Function Approximation)

one more statistics’ problem, we will not be playing with 
here, is the Density Estimation Problem
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Classification (Pattern Recognition)
• Classification (Pattern Recognition) setting is as follows

You want your model, i.e., function implemented in software, 
i.e., NN, i.e., Decision Function, i.e., SVM

to be trained on training data sets comprised of the training 
pairs (xi, yi), and

to be used on the new, previously  unseen inputs xi,in order 
to recognize it i.e., classify it i.e., predict it.

xi is called an input vector of features, or just the feature 
vector

yi is called the output, i.e., desired or target value, or just label
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Training Phase:

w = g(x, y)

class label  i = yi

Test, i.e. 
Application, 
Phase:

yi = i f(xi, w)

Y =

19/160

Hence, our data is given as:

11 12 1 1

21 21 2 2

1 2

1
1

, , or
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n
Class Regress

l l ln l

x x x y
x x x y

x x x y
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

1st data pair

lst data pair

Check some data sets here: http://archive.ics.uci.edu/ml/datasets.html
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Just one simple example:

• We are designing linear classifier by using 
sum-of-error-squares cost (merit, loss, 
fitness) function (norm). i.e. we work under 
L2-norm

• A problem is 1-dimensional for visualization's 
purposes only

• All the mathematics is same for any-
dimensional input vector x
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Let’s solve a 1-dimensional problem

1      2         4      5

+1

-1

Training pairs (xi, yi ) are given:

x=[1 2 4 5]’, y=[1 1 -1 -1]’

We are after decision function. 
Assume linear one -> then we 

are after weights (intercept and 
slope)

*

1 1 1
2 1 1 0.6

, , ,
4 1 1 1.8
5 1 1

   
                  
      

X y w X y w

After, the training we can discard the training 
data and given the new (test, application) data

yitest = xT
itestw,       say for 

x=[1.5 4.5 5.5], our model will predict right labels
y = sign([0.9  -0.9  -1.5]T)

1      2         4      5

+1

-1

sign = +1

sign = -1

Our model is       
y = xTw

w = ?, unknown
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Well, let’s go back to            
our problem of classification.

Here we show what we can see, 
meaning 1-dimensional or 2-

dimensional (1D or 2D) problems
(1D or 2D means the input 

vector x is either 1D or 2D)
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Feature 1

Class label, 
Desired value, y

+1

-1

This is a very COMPLEX problem

f(w, x)

Let’s analyze a very low dimensional problem of classifying two classes based 
on a single feature.

Thus, we believe that  the Feature 1 only can be useful for classification!
Label classes as: y = +1 for class 1, y = -1 for class 2

What about solving such a complex NONLINEAR problem

There are many possibilities, and we’ll talk about them extensively!

Feature 1

Class label, 
Desired value, 

y
+1

-1

f(w, x)

signf(w, x)

This is an EASY problem
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For two dimensional problem: classifying two classes based on 2 features, we 
can show the decision function, but when number of features > 2, we deal with 

HYPER-surfaces, that can not be seen. However, the algorithms can ‘see’ in 
high-dimensional spaces and they will be the same.

Desired value y

Feature B

Feature A

+1

0

-1 d(x, w, b)

Input plane
(x1, x2)

Linear decision function

Input space of features
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function and separating 
boundary are NON-LINEAR

Indicator function (the 
term Vapnik & 

Chervonenkis use) is 
just a

sign(Decision Function)
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Regression (Curve, Surface, Fitting, 
i.e., Function Approximation)

Linear 
model

Non-linear 
model

True, but unknown, function 
Regression curve  

Measured data points
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A view along the plane
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And now, back to ML classic and 
novel tools as well as to the 
connections between them

In the rest of presentation we tightly follow The MIT Press 
published book (Kecman, 2001), as well as our the most recent 
results. 

Check my book’s site http://www.support-vector.ws

for the newest paper’s and software’s downloads. 
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Some connections between 

NNs i.e./or/and SVMs
and  

classic techniques such as 
Fourier series and

Polynomial approximations
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F(x) = 


N

k
kk bothorkxborkxa

1
),cos(),sin(

BUT, what if we want to 
learn the frequencies?

!!!    NONLINEAR 
LEARNING PROBLEM   !!!

o = F(x)

V 
is prescribed

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

4

n

Classic approximation techniques in NN graphical appearance
FOURIER SERIES

AMPLITUDES and PHASES of sine (cosine) waves are unknown, 
but frequencies are known because

Mr. Joseph Fourier has selected frequencies for us -> they are
INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR!!!

It is ‘same’

with POLYNOMIALS
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Now, we want to find Fourier ‘series’ model o = w2sin(w1x) of the underlying 
dependency y = 2.5 sin(1.5x), known to us but not to the learning machine 
(algorithm).

x o d-netHL

oHL

net

o

w2w1

We know that the function is sinus but we don’t know its frequency and amplitude. Thus, by using 
the training data set {x, d}, we want to model this system with the NN model consisting of a single 
neuron in HL (having sinus as an activation function) as given above. 

A = w2

w = w1

J = sum(e2) = sum(d - o)2

sum(d - w2sin(w1x))2
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Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi



N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V 
is prescribed
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Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi



N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V 
is prescribedWith a prescribed 

(integer) exponents 
this is again LINEAR 

APPROXIMATION 
SCHEME. Linear in 

terms of parameters
to learn and not in 

terms of the resulting 
approximation 

function. This one is 
NL function for i > 1.
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Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi



N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V 
is prescribed

The following 
approximation scheme 
is a ‘novel’ ONE called   

RBF network here.

With a prescribed 
(integer) exponents 
this is again LINEAR 

APPROXIMATION 
SCHEME. Linear in 

terms of parameters
to learn and not in 

terms of the resulting 
approximation 

function. This one is 
NL function for i > 1.
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Approximation of 
some

NL 1D function by 

Gaussian

Radial Basis Function

(RBF)

In 1-D case forget 
these two inputs. 

They are here just to 
denote that the basic 
structure of the NN is 

the same for ANY-
DIMENSIONAL 

INPUT
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APPROXIMATION OF SOME 2D NONLINEAR FCT

Approximation of some NL 2D function by 

Gaussian Radial Basis Function (RBF)

Measurements

Images

Records

Observations

Data

For FIXED Gaussian RBFs a LEARNING FROM DATA is a LINEAR
PROBLEM. If the Centers and Covariance matrices are the subjects of 
learning, the problem becomes NONLINEAR.

Read it - extremely difficult!
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The learning machine that uses data to find the 
APPROXIMATING FUNCTION (in regression 

problems) or the SEPARATION BOUNDARY (in 
classification, pattern recognition problems), is 

the same in high-dimensional situations.

Here, it will be either the so-called SVM or the NN

(however remember, there are other models too).
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The learning machine that uses data to find the 
APPROXIMATING FUNCTION (in regression 

problems) or the SEPARATION BOUNDARY (in 
classification, pattern recognition problems), is 

the same in high-dimensional situations. 

Here, it will be either the so-called SVM or the NN

(however remember, there are other models too).

WHAT are DIFFERENCES and SIMILARITIES?

WHATCH CAREFULLY NOW !!!
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o = F(x)

x1

xi

xn 

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

This is a Neural Network,

wj j j jj

J
 ( , , )x c 

 1F(x) = 
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o = F(x)

x1

xi

xn 

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 ( , , )x c 

 1F(x) = 
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o = F(x)

x1

xi

xn 

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 ( , , )x c 

 1F(x) = 

AND AGAIN !!!
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o = F(x)

x1

xi

xn 

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

This is a Neural Network,

wj j j jj

J
 ( , , )x c 

 1F(x) = 
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o = F(x)

x1

xi

xn 

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 ( , , )x c 

 1F(x) = 
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o = F(x)

x1

xi

xn 

V w

vji wj

+1

y1

y2

yj

yj+1

yJ

and, this is a Support Vector Machine.

wj j j jj

J
 ( , , )x c 

 1F(x) = 

There is no difference

in a structure i.e., in a 
representational capacity.

However, there is an important 
difference in LEARNING.
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Where is then the 
BASIC DIFFERENCE 

between 
NNs and SVMs
coming from?
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Well ! There are two fundamental 
pieces in any ML modeling 

• They are the questions of:

• the FORM

and

• the NORM
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NORM
• covers – the type of the cost, i.e., merit, i.e., 

loss, i.e., fitness, i.e., objective, function which 
is minimized over the parameters of interest
(here we call them weights, i.e. dual variables in 
SVMs) 

FORM
• covers – the type of the model and in particular 

the type of the kernel (SVM), i.e., activation 
(NN), i.e., basis (RBF), i.e., membership (FL) 
function used

48/160

• ‘All’ our models in ML are same i.e. they are the 

SUM OF THE WEIGHTED BASIS FUNCTIONS

FORM

1
( ) ( , , )J

j j j jj
f w


 x x c

Hence, 

ONE MODEL = MANY MODELS
Polynomial approximations, Fourier expansions, NN, SVMs, wavelets, JPEG, 
MPEG, Fuzzy Logic models, …, many others … they ALL are  



49/160

• We use primarily (only) two cost functions (NORMS) in 
ML which are a MINIMIZATION of the

• SUM OF ERROR SQUARES in OUTPUT space (linear 
standard classifier, FFT, MLP NN and RBF NN)

and the 

• MAXIMAL MARGIN in INPUT space expressed as a 
MINIMIZATION of the SUM OF WEIGHTS SQUARES
(SVMs)

NORM
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Norms (Loss Functions) of NNs and SVMs

A classic multilayer perceptron (MLP), 
FFT, polynomial models

Regularization (RBF) NN

Support Vector Machines

In the last expression the SRM principle uses the VC dimension h
(defining model capacity) as a controlling parameter for minimizing 

the generalization error E (i.e., risk R).


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Let’s say a little more about the very 
basics of

the learning from data.

Note that you may find different names 
for the L from D:

identification, estimation,
regression, classification, pattern 

recognition, function approximation,
curve or surface fitting etc.
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All these tasks used to be 
solved previously.

Thus, THERE IS THE 
QUESTION:

Is there anything new in 
respect to the classic 
statistical inference?
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The classic regression and (Bayesian) classification statistical 
techniques are based on the very strict assumption that probability 

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three 
fundamental assumptions:
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learning from experimental data.

55/160

The classic regression and (Bayesian) classification statistical 
techniques are based on the very strict assumption that probability 

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three 
fundamental assumptions:

*Data can be modeled by a set of linear in parameter 
functions; this is a foundation of a parametric paradigm in 
learning from experimental data.
*In the most of real-life problems, a stochastic component 
of data is the normal probability distribution law, i.e., the 
underlying joint probability distribution is Gaussian.

56/160

The classic regression and (Bayesian) classification statistical 
techniques are based on the very strict assumption that probability 

distribution models or probabilityprobability--density functionsdensity functions are known.

Classic statistical inference is based on the following three 
fundamental assumptions:

*Data can be modeled by a set of linear in parameter 
functions; this is a foundation of a parametric paradigm in 
learning from experimental data.
*In the most of real-life problems, a stochastic component 
of data is the normal probability distribution law, i.e., the 
underlying joint probability distribution is Gaussian.
*Due to the second assumption, the induction paradigm for 
parameter estimation is the maximum likelihood method 
that is reduced to the minimization of the sum-of-errors-
squares cost function in most engineering applications.
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All three assumptions of the classic statistical paradigm turned out 
to be inappropriate for many contemporary real-life problems 
(Vapnik, Chervonenkis, 1964 - 1998) due to the facts that:
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*modern problems are high-dimensional, and if the underlying 
mapping is not very smooth the linear paradigm needs an 
exponentially increasing number of terms with an increasing 
dimensionality of the input space X, i.e., with an increase in the 
number of independent variables. This is known as ‘the curse of 
dimensionality’,
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All three assumptions of the classic statistical paradigm turned out 
to be inappropriate for many contemporary real-life problems 
(Vapnik, Chervonenkis, 1964 - 1998) due to the facts that:

*modern problems are high-dimensional, and if the underlying 
mapping is not very smooth the linear paradigm needs an 
exponentially increasing number of terms with an increasing 
dimensionality of the input space X, i.e., with an increase in the 
number of independent variables. This is known as ‘the curse of 
dimensionality’,

*the underlying real-life data generation laws may typically 
be very far from the normal distribution and a model-builder 
must consider this difference in order to construct an 
effective learning algorithm,

*from the first two objections it follows that the maximum 
likelihood estimator (and consequently the sum-of-error-squares 
cost function) should be replaced by a new induction paradigm
that is uniformly better, in order to model non-Gaussian 
distributions.
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There is a real life fact

the probabilityprobability--density functionsdensity functions are TOTALLYTOTALLY unknown,

and there is the question

HOW TO PERFORM a distribution-free   
REGRESSIONREGRESSION or CLASSIFICATIONCLASSIFICATION ?

Mostly, all we have are recorded EXPERIMENTAL DATAEXPERIMENTAL DATA (training 
patterns, samples, observations, records, examples): 

Data is high-dimensional and scarce (always too little data)!!!

High-dimensional spaces seem to be terrifyingly emptyterrifyingly empty and our 
learning algorithms (i.e., machines) should be able to operate in such 

spaces and to learn from such a sparse datalearn from such a sparse data. 
There is an old saying that redundancy provides knowledge.         

Stated simpler
the more data pairs we have the better results will be.
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Terrifying emptiness and/or data sparsenessTerrifying emptiness and/or data sparseness

Just a first simple example

Imagine sampling some 1D y = f(x), 2D z = f(x, y), and 3D u = f(x, y, z), 
functions and taking 10 samples on the domain (0, 1)!

Data points in 1D, 2D and 3D domains are less and less dense, and the 
average distance between the points increases with the dimensionality!!!

x

x

y

x

y
z
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Error Small sample  Medium sample      Large sample

Data size l

final error

noisy data set
noiseless data set

Dependency of the modeling error on the 
training data set size
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Thus, the main characteristics of all 
MODERN problems is the mapping 

between the  high-dimensional spaces, but

where are HIGH-DIMENSIONAL 
problems coming from?

Let’s exemplify this by the following 
(extremely simple) pattern 

recognition (classification) example!
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Gender recognition problem:  Are these two faces female or male?

F or  
M?

M or  
F?
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Gender recognition problem:  Are these two faces female or male?

F or  
M?

M or  
F?

There must be 
something in the 
geometry of our 
faces. Here, 18 
input variables, 
features, were 

chosen!

Problem from

Brunelli & Poggio, 
1993. 
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CURSE of DIMENSIONALITY and SPARSITY OF DATA.

The newest promising tool FOR WORKING UNDER THESE CONSTRAINTS 
are the SUPPORT VECTOR MACHINES based on the STATISTICAL 

LEARNING THEORY (VLADIMIR VAPNIK and ALEKSEI CHERVONENKIS).

WHAT IS THE contemporary BASIC LEARNING PROBLEM???

LEARN THE DEPENDENCY (FUNCTION, MAPPING) from 
SPARSE DATA, under NOISE, in HIGH DIMENSIONAL 

SPACE!
Recall - the redundancy provides the knowledge!

A lot of data - ‘easy’ problem.
LET’S  EXEMPLIFY  

THE  INFLUENCE  OF  A  DATA  SET  SIZE ON  THE  
SIMPLEST  RECOGNITION  PROBLEM

BINARY CLASSIFICATION,  i.e.,  DICHOTOMIZATION.
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First, the simplest case – 1-dim feature (i.e. input), 
generated by normal, Gaussian distribution

a) enough data b) sparse data

Sum of error squares will work in the left hand side graph, and it 
will make BIG error in the right hand side one
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How this algorithm works? X             w      =        D

-1    1.0000
3    1.0000
5    1.0000
7    1.0000
8    1.0000
9    1.0000
11   1.0000
12   1.0000
14   1.0000
16   1.0000

1
1
1
1
1
-1
-1
-1
-1
-1

Note that a decision function here is  

given as:      yi = w1xi + w2

The solution here is given by 

(we’ll  show later why is it this way)

  1 *T T
 w X X X y X y

X* is known as  the 
pseudoinverse

w   = 
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How the pseudoinverse solution 
has actually been obtained?
Well, it is an old good math 

technique for solving both over- and 
under-determined systems.

However, be extremely cautious –
the very solutions for the two 
different cases have entirely 

different meanings!
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Classical (non)Linear Regression (i.e., Classification)

 
     

 

1 1

1 1

1 1

1 1

1 1

1

1 1

,1 , 1

/*

ˆ

T
nm m n left mn

T T
mn nm m mn n

T T
mn nm m mn n

T T T T
mn nm mn nm m mn nm mn n

T T
m mn nm mn n

test test m m

X w y X

X X w X y

X X w X y

X X X X w X X X y

w X X X y

y X w

 















 

 

 

 

 

 

Pseudoinverse

NORMAL 
SYSTEM

n = number of data,        m = number of features, attributes, inputs

Usually, n > m -> 
overdetermined system

But not always!!!

Check the differences in a 
meaning of the solution w
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In the case of an over-determined system
w results in a solution providing the 
minimal sum of errors squares,

and you should look up into the meaning of 
the solution w in the case of an under-

determined system.

Hint: There is an infinity of solutions: which one is 
extracted by the pseudoinverse?
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x1=[-1;3;5;7;8;9;11;12;14;16];
i1=ones(10,1);
x=[x1 i1]
d=[1 1 1 1 1 -1 -1 -1 -1 -1]
d=d'

w=pinv(x)*d
plot(x1(1:5),zeros(size(x1)/2,1),'bs',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',10)

hold on
plot(x1(6:10),zeros(size(x1)/2,1),'rs',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','r',...
'MarkerSize',10)

i2=1:1:14;
plot((w(1)*i2+w(2)),'--gs','LineWidth',4,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','y',...
'MarkerSize',2)

grid on

Matlab code for previous example

74/160
74

% linclass_lect_RS
close all, clear all
num_data_per_class = 5; shift=3; 
% the smaller the shift of the means, 
% the bigger overlapping of classes
x1=[randn(num_data_per_class,1);
randn(num_data_per_class,1)+shift];
i1=ones(2*num_data_per_class,1);
x=[x1 i1];
d=[ones(num_data_per_class,1);-ones(num_data_per_class,1)];
w=pinv(x)*d
plot(x1(1:num_data_per_class),zeros(num_data_per_class,1),'bs',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',10)

hold on
plot(x1(num_data_per_class+1:2*num_data_per_class),zeros(num_data_per_class,1),'r
s',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','r',...
'MarkerSize',10) 

x2=[min(x1)-0.5:0.25:max(x1)+0.5]';i2=ones(length(x2),1);
plot(x2,[x2 i2]*w,'--gs','LineWidth',4,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','y',...
'MarkerSize',2)            

grid on

-2 -1 0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5More general matlab code
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However, what about this idea – draw the 
decision boundary through the two ’closest’ points 

from opposite classes

Actually, similar results will be obtained for SVMs, 
where we don’t bother with the sum of error 

squares in the output space 76/160

Let’s check now the 2-dimensional 
input case, and 

this is the last example where we can 
represent the decision function

graphically.

Nevertheless, the algorithms will work 
for any-dimensional input, but  

following the results visually will not be 
possible!!!
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Decision function in 2-dim case is 
shown below

Desired value y

Feature B, x2+1

0

-1
d ( x, w, b )

Input plane

(x1 , x2 )

Feature A, x1

Decision function ( z ) 

z = w1x1 + w2x2 + w3 * 1

The separation boundary in 
the input space
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4 5 6 7 8 9 10
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

A simple example how a classic linear classifier
algorithm works: X                          D

5.7948    5.9797    1.0000
5.9568    5.2714    1.0000
5.5226    5.2523    1.0000
5.8801    5.8757    1.0000
5.1730    5.7373    1.0000
7.1365    7.6614    1.0000
7.0118    7.2844    1.0000
7.8939    7.4692    1.0000
7.1991    7.0648    1.0000
7.2987    7.9883    1.0000

1
1
1
1
1
-1
-1
-1
-1
-1

w = X* D      wopt =  [-0.5209   -0.5480    6.9731]T, and 

the separation boundary equals

x2 =  -0.951x1 + 12.725
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Now, a motivation for 
a maximal margin idea,

or

what to do when having only 
sparse training data set (not too 

many data) 
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CLASSIFICATION or PATTERN RECOGNITION EXAMPLE
Assume - Normally distributed classes, same covariance
matrices. Solution is ‘easy’ - decision boundary is linear
and defined by parameter w = X* D when there is 
plenty of data (infinity).     X* denotes the PSEUDOINVERSE.

d1 = -1

x1

x2

d2 = +1
x2 = w1x1 + w2

Note, this line is not a decision function. It is the intersection of 
the decision function and input space called separation boundary.

Note, we are looking 
into the input space
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CLASSIFICATION or PATTERN RECOGNITION EXAMPLE
Assume - Normally distributed classes, same covariance
matrices. Solution is ‘easy’ - decision boundary is linear
and defined by parameter w = X* D when there is 
plenty of data (infinity). X* denotes the PSEUDOINVERSE.

d1 = -1

x1

x2

d2 = +1
Note that this 

solution follows 
from the last two 
assumptions in 

classic inference!

Gaussian data and 
minimization of the 

sum-of-errors-
squares!
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However, for a small sample -

Solution defined by w = X* D is NO LONGER GOOD ONE !!!

Because, for this data set we will obtain this separation line,
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and,
for another data set we will obtain another separation line.
Again,  for small sample -
a solution defined by w = X* D is NO LONGER GOOD ONE !!!
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What is common for both separation lines the red and the blue one.

Both have a SMALL MARGIN.

WHAT’S WRONG WITH SMALL MARGIN? Look at the RED line!
It is very likely that the new examples (     ,      ) will be wrongly classified.
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What is common for both separation lines the red and the blue one.

Both have a SMALL MARGIN.

WHAT’S WRONG WITH SMALL MARGIN? Look at the BLUE line!
It is very likely that the new examples (     ,      ) will be wrongly classified.

However, the question is

how to DEFINE and FIND 

the 

OPTIMAL SEPARATION 
HYPERPLANE 

GIVEN (scarce)

DATA SAMPLES ???
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The STATISTICAL LEARNING THEORY IS DEVELOPED TO SOLVE 

PROBLEMS of FINDING THE OPTIMAL SEPARATION HYPERPLANE 

for small samples.

87/160

OPTIMAL 
SEPARATION 
HYPERPLANE 

is the one that 
has  the 

LARGEST 
MARGIN

on given 

DATA SET

The STATISTICAL LEARNING THEORY IS DEVELOPED TO SOLVE 

PROBLEMS of FINDING THE OPTIMAL SEPARATION HYPERPLANE 

for small samples.
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One more intuitive presentation why the maximal margin idea may 
be a good statistical approach follows on the next slide!

Note, however, that the intuition only does not qualify for, and 
does not guarantee, a broad acceptance of a maximal margin 

approach in a statistical learning.

There are both the strong theoretical proofs about the errors, 
bounds and generalization properties of SVMs based on a 

maximal margin idea, and convincing experimental 
performances on various benchmark data sets..
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SUPPORT VECTOR MACHINE

is a MAXIMAL MARGIN CLASSIFIER

• it aims at finding the separating hyperplane with the maximal 
geometric margin (and not any one, which is the perceptron solution)

• WHY maximal margin?

Suppose we want to separate two linearly separable classes, and we 
did it by two different decision functions.

Class 1, y = +1

Class 2, y = -1 Class 2, y = -1

Class 1, y = +1
Small 

margin

Large 
margin

x1x1

x2x2

Separating lines, i.e., 
decision boundaries, 

i.e., ‘hyperplanes’

Thus, the larger the margin, the smaller the probability of misclassification! 90/160

There are two basic, constructive approaches to the minimization
of the right hand side of previous equations 

(Vapnik, Chervonenkis 1964 - 1998): 

-choose an appropriate structure (order of polynomials, 
number of HL neurons, number of rules in the FL model) 
and, keeping the confidence interval fixed in this way, 
minimize the training error (i.e., empirical risk), or

-keep the value of the training error fixed (equal to zero or 
equal to some acceptable level) and minimize the 
confidence interval.

classic NNs implement the first approach (or some of its 
sophisticated variants) and SVMs implement the second strategy. 

In both cases the resulting model should resolve the trade-off 
between under-fitting and over-fitting the training data.

The final model structure (order) should ideally 
match the learning machines capacitylearning machines capacity with training data training data 

complexitycomplexity.
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SVMs 

Let us do some more 
formal,

meaning, 

mathematical analysis of 
SVMs learning!

92/160

We follow an idea of a gentle SVMs introductiongentle SVMs introduction, i.e., of a gradual gradual 
proceedingproceeding from the ‘simple’ cases to the more complex ones! 

1) Linear Maximal Margin Classifier for Linearly
Separable Data - no samples overlapping 
(late 1960-ties and early 70-ties). 

3) Nonlinear Classifier

2) Linear Soft Margin Classifier

for Overlapping Classes.

4) Regression by SV Machines that 
can be both linear and nonlinear! 

(1995)

(1992)

(1996)
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1) Linear Maximal Margin Classifier for Linearly Separable Data

Binary classification - no samples overlapping

Given some training data

(x1, y1), . . ., (xl, yl), yi  {-1, +1}

find the function f(x, w0)  f(x, w) which best approximates the  
unknown discriminant (separation) function y = f(x). 

Linearly separable data 
can be separated by in 
infinite number of linear 
hyperplanes that can be 

written as

f(x, w) = wTx + b

The problem is: find the 
optimal separating 

hyperplane
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1) Vapnik-Chervonenkis: Optimal separating hyperplane is the one with

MAXIMAL MARGIN !

This hyperplane is uniquely determined by the vectors on the 
margin

the support vectors!
MARGIN IS DEFINED by 

w as follows:

(Vapnik, Chervonenkis ‘74)

2M 
w

M

Proof for M is on the next two slides
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The relation between the weight vector w and the margin M
Optimal separating hyperplane with the 

largest margin intersects half-way 
between the two classes.

Class 1, y = +1

Margin M

x1

x2

(wTx) + b = +1
(wTx) + b = 0

(wTx) + b = -1

Class 2, y = -1
w

x1

x2

x3

w

x1

x2

0

MD2 D1

a

b

The margin M that is to be maximized during the training stage is a projection, 
onto the separating hyperplane’s normal (weight) vector direction, of a distance 
between any two support vectors belonging to different classes. In the example 
above this margin M can be found as follows:
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M = (x1 – x2)w = (x1 – x3) w,

where the subscript w denotes the projection onto the weight vector w
direction. The margin M can now be found by using support vectors x1
and x2 as follows

D1 = ||x1||cos(), D2 = ||x2||cos() and M = D1 - D2,
where  and  are the angles between w and x1 and between w and x2
respectively as given on page 4 e.g.,

Substituting cosines into the expression for M above results in
M = (x1

Tw – x2
Tw) / ||w||

and by using the fact that x1 and x2 are support vectors satisfying 
yj|wTxj + b| = 1, j = 1, 2, that is
wTx1 + b = 1 and wTx2 + b = -1 

we finally obtain !!!!!!

1

1

cos( )
|| |||| ||

T

T 
x w

x w

2M 
w
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The optimal canonical separating hyperplane (OCSH), i.e., a separating 
hyperplane with the largest margin (defined by M = 2 / ||w||), specifies 
support vectors, i.e., training data points closest to it, which satisfy 
yj[wTxj + b]  1, j = 1, NSV. At the same time, the OCSH must separate 
data correctly, i.e., it should satisfy inequalities

yi[wTxi + b]  1, i = 1, l

where l denotes a # of training data and NSV stands for a # of SV. See 
the next slide about the meaning of the inequality above!

Note that maximization of M means a minimization of ||w||. 
Minimization of a norm of a hyperplane normal weight vector ||w|| =  

leads to a maximization of a margin M. 
Because sqrt(f ) is a monotonic function, its minimization is equivalent 
to a minimization of f .

Consequently, a minimization of norm ||w|| equals a minimization of 

wTw = w1
2 + w2

2 + … + wn
2

and this leads to a maximization of a margin M.

2 2 2
1 2 ...T

nw w w   w w
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Desired value y Indicator function iF(x, w, b) = sign(d)
Input x2

Input x1

The decision boundary or 
separating line is an 
intersection of d(x, w, b) and an 
input plane (x1,x2); d=wTx +b=0

+1

0

-1

The optimal separating hyperplane d(x, w, b) 
is an argument of indicator function

d(x, w, b)

Stars denote support vectors

Input plane 
(x1, x2)

-5

-4

-3

-2

-1

0

+1

2

3

4

5

1 2 3 4 5

Input x1

Target y, i.e.,  d
The canonical hyperplane d(x, w, b) that is, for a 1-dim input, a canonical straight line.

The decision boundary that is, for a 1-dim input, 
a point or a zero-order hyperplane.

d(x, k1w, k1b)

d(x, k2w, k2b)

The indicator function iF = sign(d(x, w, b)) is a stepwise function. 
It is a SV machine output o.

The two dashed lines represent 
decision functions that are not 
canonical hyperplanes. 
However, they do have the same 
decision boundary as the 
canonical hyperplane here.

1-D input

2-D input
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Thus the problem to solve is:

minimize

J = wT w = || w ||2

subject to constraints

yi[wT xi + b]  1

and this is a classic QP problem with constraints 
that ends in forming and solving of a primal and/or 

dual Lagrangian. 100/160

Thus the problem to solve is:

minimize

J = wT w = || w ||2

subject to constraints

yi[wT xi + b]  1

and this is a classic QP problem with constraints 
that ends in forming and solving of a primal and/or 

dual Lagrangian.

MarginMargin

maximization!maximization!

CorrectCorrect

classification!classification!
Note that # of constraining inequalities = # of training data l
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Now, from the one sphere of 
mathematics (say, an 

intuitive geometric one) we 
should jump into the another 

sphere, 
into the sphere of a nonlinear 

optimization (say, into an 
algebraic sphere).
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Basics of the General Optimization Problem

Optimize f(w)

Subject To  (s.t.) g(w) = 0
w > 0, or w >= 0

LINEAR PROGRAMMING problem: when f(w) and g(w) are 
linear and wi's > 0 

INTEGER PROGRAMMING problem: when wi's should take 
only integer values.  

QUADRATIC PROGRAMMING problem f(w) quadratic,
g(w) is linear,

NONLINEAR PROGRAMMING problem, f(w) and g(w)  are 
general nonlinear functions!
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How ones solve such QP problems with constraints:

Step 1) Forming a Primal Lagrangian in terms of primal (original) 
variables w-s, b and -s (by an augmenting of the cost function by the 
constraints multiplied by dual variables -s).

Step 2) Using the Karush-Kuhn-Tucker (KKT) conditions and forming a 
Dual Lagrangian in terms of -s only.

Step 3) Solving a Dual Lagrangian for -s.

Step 4) Using the KKT conditions for calculation of primal variables w-s
and b.

Step 5) Creating the decision function for a classification problem, or the 
regression one for the function approximation task.

Step 6) Applying the SVM’s model obtained.
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A QP problem J = wT w = || w ||2, subject to constraints yi[wT xi + b]  1
is solved by the saddle point of the Lagrange functional (Lagrangian).
(In forming the Lagrangian for constraints of the form gi > 0, the inequality constraints equations are multiplied by 
nonnegative Lagrange multipliers ai (i.e., ai > 0) and subtracted from the objective function).

Step 1) Thus, a primal variables Lagrangian L(w, b, ) is,

L(w, b, ) =

where the i are Lagrange multipliers. The search for an optimal saddle 
point (wo, bo, 0) is necessary because Lagrangian L must be minimized
with respect to w and b, and has to be maximized with respect to 
nonnegative i (i.e., maximal i  0 should be found). This problem can 
be solved either in a primal space (which is the space of parameters w
and b) or in a dual space (which is the space of Lagrange multipliers i). 

The second approach gives insightful results and we will consider this 
solution in a dual space below. In order to do that, we use the Karush-Kuhn-
Tucker (KKT) conditions for the optimum of a constrained function.

1

1 { [ ] 1}
2

l
T T

i i i
i

y b


  w w w x
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Step 2) Karush-Kuhn-Tucker (KKT) conditions are:

- at the saddle point (wo, bo, o), derivatives of Lagrangian L with respect 
to primal variables should vanish which leads to,

- and, in addition, the complementarity conditions

i{yi[wTxi + b]-1}= 0, i = 1, l.

must be satisfied. 
Substituting (a) and (b) in a primal variables Lagrangian L(w, b, ) (on 
previous page), we change to the dual variables Lagrangian Ld()

Step 2-3) Ld() = 
1 , 1

1
2

l l
T

i i j i j i j
i i j

y y 
 

  x x

1
0, i.e.,

l

o i i i
io

L y



 

 w x
w

1
0, i.e., 0

l

i i
io

L y
b





 

 

(a)

(b)
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Step 3) Such a standard quadratic optimization problem can be 
expressed in a matrix notation and formulated as follows:

Maximize

Ld() = -0.5TH  + 1T,

subject to

yT = 0, Note that there are 1 equality constraint here

  0, Note that there are l inequality constraints here

where, H denotes the Hessian matrix ( Hij =yiyj(xixj) = yiyjxT
ixj ) of this 

problem and 1 is a unit vector  1 = [1 1 . . . 1]T. 

Some standard optimization programs typically minimize given objective function. 
Obviously, we can apply such programs and the same solution would be obtained if we

minimize
Ld() = 0.5TH - 1T, 

subject to the same constraints namely 
yT = 0,   0.
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Step 4) Solutions oi of the dual optimization problem above determine 
the parameters of the optimal hyperplane wo (according to (a)) and bo
(according to the complementarity conditions) as follows,

NSV denotes the number of support vectors. Note that an optimal weight 
vector wo, the same as the bias term b0, is calculated by using support 
vectors only. This is because Lagrange multipliers for all non-support 
vectors equal zero (oi = 0, i = NSV + 1, l). Finally, having calculated wo
and bo we obtain a decision hyperplane d(x) and an indicator function iF
= o = sign(d(x)) as given below
Step 5-6)

d(x) = ,     iF = o = sign(d(x)).

1

, 1,
SVN

o o i i SVi
i

y i N


 w x

SV1

1 1( ( ),  = 1, .freeSVN T
o s os

freeeSV s

b s N
N y

  x w

1 1

l l T
oi i o i i i oi i

w x b y b
 

    x x

For b, we use only FREE, i.e., 
unbounded, SVecs for which

0 i C 

All Support Vectors

Remember this scalar product

Story about C comes in few slides!!!
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Both the beauty and the power of working 
with SVMs can be seen below too

My Springer book, page 30
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However, the previous algorithm will not work for linearly NOT 
separable classes i.e., in the case when there is data overlapping 

as shown below 

There is no single hyperplane that can perfectly separate all data! 

But, separation can now be done in two ways:

• 1) allow some misclassified data
• 2) try to find NONLINEAR separation boundary 110/160

2) Linear Soft Margin Classifier for Overlapping Classes 

(allowing misclassification)

Possible idea!

Minimize

where C is a penalty parameter, trading off the margin size for
the number of misclassified data points. Large C leads to small
number of misclassification and bigger margin and vice versa.

HOWEVER!!! There is a serious problem! Counting errors can’t be 
accommodated within the NICE (meaning reliable, well understood 
and well developed) quadratic programming approach.
Also, it doesn’t distinguish between disastrous errors and near 
misses)!

1 (# )
2

T C of training errorsw w

SOLUTION! Minimize1 (      )
2

T C distance of error points to their correct sidew w
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2) Linear Soft Margin Classifier for Overlapping Classes

Now one minimizes:   

s.t. wTxi + b  +1 - i, for yi = +1,
wTxi + b  -1 + i, for yi = -1.

The problem is no longer convex and the solution is given by the saddle 
point of the primal Lagrangian Lp(w, b, , , ) where i and i are the 
Lagrange multipliers. Again, we should find an optimal saddle point (wo, 
bo, o, o, o) because the Lagrangian Lp has to be minimized with 
respect to w, b and , and maximized with respect to nonnegative i and 
i.

1

1( , ) ( )
2

l
T k

i
i

J C 


  w w w

The solution is a hyperplane again. No 
perfect separation however! 

See in the book the details of the solution!
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For overlapping classes dual  problem 
is formulated as

T1
d 2

1 1 1
max

N N N

i j i j i j i
i j i

L y y 
  

     
α

x x

1

0

0

i
N T

i i
i

C

y



 


 

  y

Ni ,,1 fors.t.

See in my Springer book the details of the solution!

This C is the NOVELTY
in respect to the hard 

margin classifier
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Hard vs. Soft Margin SVMs 
an example on robustness

Class 2, y = -1

Class 1, y = +1

x1

x2

Hard Margin SVM 
leads to small margin

Class 2, y = -1

Class 1, y = +1

x1

x2

Soft Margin SVM 
leads to large margin



Use of penalty 
parameter C here
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QP setting of a LINEAR SVM learning problem:

HARD MARGIN:

PRIMAL: minimize J = wT w = || w ||2, s.t. yi[wT xi + b]  1!

DUAL: minimize s.t. i  0,

SOFT MARGIN:

DUAL: minimize s.t. C  i  0,

Learning is expressed in terms of training data and it depends only on 
the scalar products of input patterns (xi

Txj).
Comments: Solving primal results in the same weight vector w as in the 
dual solution, but ‘primal’ w is composed of all training data. Primal does 
not select relevant points  - support vectors (i.e., it does not compress the 
information as the dual does). i > 0 only for SVs, in a dual setting!!! 

Just a fraction of relevant data (SVs) composes a decision hyperplane.

1 , 1

1
2

l l
T

i i j i j i j
i i j

y y 
 

  x x
1

0l
i ii
y




1 , 1

1
2

l l
T

i i j i j i j
i i j

y y 
 

  x x
1

0l
i ii
y



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What to do, and how to go about, when the 
true decision function (i.e., separation 

boundary) is NONLINEAR???

Remind, for example, that even if data are 
generated by normal (Gaussian) distribution 
but with different covariance matrices, the 
true decision function will be a quadratic 
function (see Example 1.10 on page 95, in 

chapter 1 of my The MIT book) 

Here the LINEAR SVM models 
story ends!!!

116/1600 1 2 3 4 5

0

1

2

3

4

5

Feature x1

Feature x2

Nonlinear SV classification

Class 1
y = +1

Class 2
y = -1

Hence, the hyperplanes cannot be the solutions when the 
decision boundaries are TRULY nonlinear, SAY AS IN THE CASE OF TWO 
GAUSSIAN CLASSES HAVING DIFFERENT COVARIANCE MATRICES or AS IN THE 

EXAMPLE SHOWN BELOW
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Now, the SVM should be constructed by

i) mapping input vectors nonlinearly 
into a high dimensional feature space and,

ii) by constructing the OCSH in the 
high dimensional feature space.

Check my Springer Verlag book

for all the derivations!!! 
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Feature 1

Class label, 
Desired value, y

+1

-1

This is a very COMPLEX problem

f(w, x)

Let’s analyze a very low dimensional problem of classifying two classes based 
on a single feature.

Thus, we believe that  the Feature 1 only can be useful for classification!
Label classes as: y = +1 for class 1, y = -1 for class 2

What about solving such a complex NONLINEAR problem

There are two possibilities:

Feature 1

Class label, 
Desired value, 

y
+1

-1

f(w, x)

signf(w, x)

This is an EASY problem

119/160

Feature 1

Class label, 
Desired value, 

y
+1

-1

Design a NONLINEAR f(w, x)

f(w, x)

1) Solve in original x domain

This is not a feasible approach

Design a LINEAR decision function in a NEW features plane. 

Note that we do not see Class Labels here!

2) Map data into an 
extended features’ domain

This is an RIGHT approach

Feature 1f(w, x) = 0

x2

f(w, x) = 0

Example 1:
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d(x)x

x

x2

b

iF = sign(d(x))

An extension (mapping) of an input space x into the feature one [x x2] can be 
given the graphical representation in the form of a ‘neural’ network below

The linear activation function 
always means a summation

∑
+1

The thresholding shown 
here is needed for a 

classification only 

w1

w2
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Why may the mapping of input space X (x1, x2) into feature space F (f(x1), f( x2)) be useful?

Example 2: Nonlinear (quadratic) separation boundary in X (x1, x2) is transformed 
into linear one in F (x1

2, x2) by (polynomial) mapping x1 into x1
2

-3 -2 -1 0 1 2 3
-2

0

2

4

6

8

10

12

x1

x 2

Using original input x1 , data are not linearly separable

0 1 2 3 4 5 6 7 8 9
-2

0

2

4

6

8

10

12

x1 = x 1
2

x 2

NL mapping of inputs leads to a linear separation boundary in a feature space

x1= x1
2

x1

x2

x2
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-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x 2

Using original input x1, data are not linearly separable

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

x1=sin(x1)

x 2

NL mapping of inputs leads to linear separation boundary in feature space

Example 3: Nonlinear (sinusoidal) separation boundary in X (x1, x2) is transformed 
into linear one in F (sin(x1), x2) by (trigonometric) mapping x1 into sin(x1)

x1 = sin(x1)

x1
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In both cases the mapping performed can be represented as the following 
SVM i.e., NN

f1

f 2

x1

x2 w2

w1
S

o

Despite the fact that NL mapping works nicely, there are two basic 
comments needed now:

a) We decided in advance which NL mapping to perform, for we knew 
the nonlinearity. Generally we do not know the very character of 
separation (hyper)surfaces and we will try to solve each problem with a 
few standard mappings (polynomial and RBF Gaussian ones primarily).

b) The dimension of a feature space in two previous examples is same as 
the one of the original input space. This is, however, not typical and we 
will usually map input space into much richer space (space of the        
much higher dimension, possibly into space of infinite dimension(!))

After the mapping  is 
chosen, the linear margin 
classifier, i.e., the SVM, is to 
be designed in a feature 
space with the hard, or soft 
learning algorithms presented 
so far!
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Solution of a problem, regarding both the nonlinear mapping and a 
dimensionality of the feature space (that is related to the number of 

neurons in a hidden layer) used, is usually not unique.
Consider the simplest parity problem - XOR one:

0
1

1.5

1

1.5

Class 2

Class 1

Class 2

Class 1

This is a classic NONLINEARLY SEPARABLE problem! NO linear separation line!

We show solutions by using both a polynomial and an RBF approach.    
Other polynomial and RBF solutions, as well as other NL ones are possible, too!!!
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XOR problem - polynomial solution: f(x) = x1 + x2 - 2 x1 x2 - 1/3
Suppose mapping: y1 = x1, y2 = x2, y3 = x1 x2. It can be realized by the following NN.

x3 = +1  constant input, bias

1

1
-1/3

x1

x2

1

1

-1.5

y3 o

LAYERS
INPUT       HIDDEN    OUTPUT

-2

x3 = +1 , bias

1

-1/3

x1

x2

1

1
-1.5

y3 o

LAYERS
INPUT       HIDDEN    OUTPUT

-2

1

=

y1

y2

y3

1

0
1

-0 5 0 0 5 1 1 5
-0.5

0

0.5

1

1.5

f

f

f  >  0

Feature space 
F (x1, x2. f( x1, x2))

Original space
X (x1, x2)
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XOR problem - Gaussian RBF solution. We choose two Gaussians 
only, i.e., a dimension of a feature space is 2: c1 = [1 1]T and c2 = [0 0]T.

This is a following mapping: y = [exp(- ||x - c1|| 2)    exp(- ||x - c2|| 2)]T.   Hence, x -> y:

[0 0] -> [0.135 1],  [1 1] -> [1 0.135], [1 0] -> [0.368 0.368],  [0 1] -> [0.368 0.368].    
The following NN, will produce linear separation boundary in a feature space and the NL one in the original space.

c11

c 22

x1

x2 1
1

S
o

c12

c21

-1

y1

y2

0
1

1.5

1

1.5

Class 2

Class 1

Class 1

y2

y1

Feature 
space F (f(x1), 

f( x2)) 

o = y1 + y2 - 1 = 0

0
1

1.5

1

1.5

Class 2

Class 1

Class 1

x2

x1

Original 
space X

(x1, x2)

Class 2

o = exp(- ||x - c1|| 2) + exp(- ||x - c2|| 2 - 1=0
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cont. XOR problem - Gaussian RBF solution;
The decision function o = exp(- ||x - c1|| 2) + exp(- ||x - c2|| 2 - 1, and its contours. The red one is for o = 0 

o
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d(x)

x1

x2

x3

1

w1

+1

1(x)

2(x)

3(x)

4(x)

5(x)

6(x)

7(x)

8(x)

9(x)

x1

x2

x3

(x1)2

x1x2

x2x3

x1x3

(x3)2

(x2)2

w9

b

x1

1

1

x2

x3

x2

x3

x1

Hyperplane in a feature 
space F: d(z) = wTz + b

Second order polynomial 
hypersurface d(x) in an input space

Mapping z = (x)

iF=sign(d(x))

SVMs arise from more 
complex mapping of an n-
dimensional input vector x

= [x1 x2 … xn]T into a 
feature vector z = (x).
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Now, we apply a ‘kernel trick’.

One basic idea in designing nonlinear SV machines is to map input 
vectors x   n into vectors z of a higher dimensional feature space F(z) 
= (x) where  represents mapping:  n  f and to                       

solve a linear classification problem in this feature space

x   n  z(x) = [a11(x), a22(x), . . ., aff(x)]T   f

The solution for an indicator function iF(x) = sign(wTz(x) + b), which is a 
linear classifier in a feature space F, will create a nonlinear separating 
hypersurface in the original input space given by

iF(x) = sign

K(xi, xj) = zi
Tzj = T(xi)(xj).

Note that a kernel function K(xi, xj) is a function in input space.

( ( ) ( ) ) i i
T

i
i

l

y bz x z x

 

1
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Kernel functions Type of classifier

K(x, xi) = [(xTxi) + 1]d                       Polynomial of degree d

Gaussian RBF

K(x, xi) = tanh[(xTxi) + b]*        Multilayer perceptron
*only for certain values of b

The learning procedure is the same as the construction of a ‘hard’ and 
’soft’ margin classifier in x-space previously.                     

Now, in z-space, the dual Lagrangian that should be maximized is

Ld() = or,

Ld() =`

K ei
i

T
i( , )

[( ) ( )]
x x

x x x x


  1
2

1

  i
i

l

i j i j i
T

j
i j

l

y y
 
 

1 1

1
2

z z
,

  i
i

l

i j i j i j
i j

l

y y K
 
 

1 1

1
2

( , )
,

x x
L() = -0.5’H  + 1’,

H = Y’Y.*K
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and the constraints are 

i  0, i = 1, l

In a more general case, because of a noise or generic class’ features, 
there will be an overlapping of training data points. Nothing but 
constraints change as for the soft margin classifier above. Thus, the 
nonlinear ‘soft’ margin classifier will be the solution of the quadratic 
optimization problem given above subject to constraints

C  i  0, i = 1, l and

The decision hypersurface is given by 

We see that the final structure of the SVM is equal to the NN model.
In essence it is a weighted linear combination of some kernel (basis) 
functions. We’ll show this (hyper)surfaces in simulations later.

d y K bi i i
i

l

( ) ( , )x x x 

 

1

 i i
i

l

y 

 0

1
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In the case of NL SVMs we never, or only rarely, 
calcu-late a weight vector w. Solving NL SVM is 

performed in the so-called feature space which is of 
a very high, including infinite, dimension. In fact we 
don’t need w!!! Instead we use alphas as follows (in 

S. Abe’s book):

where, U is a set of all free i.e., unbounded SVecs, and 
S is a set of all SVecs
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Regression

by

Support Vector
Machines

135/160

Comparisons of some popular regression schemes
d is a dimension of the model. For  NL models it corresponds to the # of HL neurons, i.e., to the # of SVs!

The crucial difference between RNs and SVMs is in a loss function used! Note 
that an application of Vapnik’s -insensitivity loss function L leads to QP 
learning and to the sparse solution. Only a fraction of data points is important! 
They are SVs!  Data compression!

Method Functional to minimize Solution
Linear

regression
e2 = ( y – f(x, w) )2

d << l
f(x, w) = xTw

w = X+y
Ridge

regression
e2 = ( y – f(x, w) )2 + ||w||2

d << l
f(x, w) = xTw

w = (XXT + I)-1 XTy
RBF networks,
approximation

e2 = ( y – f(x, w) )2

d << l
f(x, w) = i=1,d wig(x - ci)

w = G+y, ci is predefined
RBF networks,
interpolation

e2 = ( y – f(x, w) )2

d = l
f(x, w) = i=1,l wig(||x - xi||)

w = G-1y, ci = xi

Regularization
Networks (RNs)

( y – f(x, w) )2 + ||f||FS
2

d = l
f(x, w) = i=1,l wig(||x - xi||)

w = (G + I)-1y, ci = xi

SVMs L + ||f||FS
2

# of SV << l
f(x, w) = i=1,l wig(||x - xi||)
w by QP, ci = xi, but note that

many wi = 0, SPARSENESS
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Regression by SVMs
Initially developed for solving classification problems, SV techniques 

can be successfully applied in regression, i.e., for a functional 
approximation problems (Drucker et al, (1996), Vapnik et al, (1997)). 

Unlike pattern recognition problems (where the desired outputs yi are discrete 
values e.g., Boolean), here we deal with real valued functions.

Now, the general regression learning problem is set as follows;

the learning machine is given l training data from which it attempts to 
learn the input-output relationship (dependency, mapping or function) 

f(x). 

A training data set D = {[x(i), y(i)]   n  , i = 1,...,l} consists of l
pairs (x1, y1), (x2, y2), …, (xl, yl), where the inputs x are n-dimensional 

vectors x   n and system responses y  , are continuous values. The 
SVM considers approximating functions of the form  

1
( , ) ( )

N

i i
i

f v


x v x



137/160a) quadratic (L2 norm)          b) absolute error (least modulus, L1 norm)                   c) -insensitivity

J J J

y - f(x, w)y - f(x, w)    y - f(x, w)



Vapnik introduced a more general error (loss) function -
the so-called -insensitivity loss function

Thus, the loss is equal to 0 if the difference between the predicted f(x, w) 
and the measured value is less than . Vapnik’s -insensitivity loss 
function defines an  tube around f(x, w). If the predicted value is 
within the tube the loss (error, cost) is zero. For all other predicted points 
outside the tube, the loss equals the magnitude of the difference between 
the predicted value and the radius  of the tube. See the next figure.

| - ( , ) |
if | - ( , ) |

| - ( , ) | - , otherwise.
y f

y f
y f

x w
x w

x w





0
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x

y       f(x, w)

Predicted f(x, w) 
solid line




Measured

Measured

i

j
*

yi

yj

The parameters used in (1-dimensional) support vector regression.
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Now, minimizing risk R equals

and the constraints are,
yi – wTxi - b   + i, i = 1, l,
wTxi + b - yi   + i*,   i = 1, l,                          
i  0 i = 1, l,                                            
i

*  0 i = 1, l,

where  and * are slack variables shown in previous figure for 
measurements ‘above’ and ‘below’ an -tube respectively. Both slack 
variables are positive values. Lagrange multipliers (that will be 
introduced during the minimization) i and i

* corresponding to  and *

will be nonzero values for training points ‘above’ and ‘below’ an -tube 
respectively. Because no training data can be on both sides of the tube, 
either i or i

* will be nonzero. For data points inside the tube, both 
multipliers will be equal to zero.

Rw w, , * || || 
 1

2
2 C

i

l

i

l *i i
  11

C
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Similar to procedures applied to SV classifiers, we solve this constrained 
optimization problem by forming a primal variables Lagrangian Lp(w, , 
*)  Step 1

A primal variables Lagrangian Lp(wi, b, , *, , *, , *) has to be 
minimized with respect to primal variables w, b,  and * and maximized
with respect to nonnegative LaGrange multipliers , *,  and *. This 
problem can be solved again either in a primal space or in a dual one. 
Below, we consider a solution in a dual space. Applying Karush-Kuhn-
Tucker (KKT) conditions for regression, we will maximize a dual 
variables Lagrangian Ld(, *)   Step 3

Ld(,*) = 

subject to constraints

      
  
          ( ) ( ) ( )( )* * * *

,
i i

i

l

i i i
i

l

i i j j i
T

j
i j

l

y
1 1 1

1
2

x x

     
        i i i ii

l
i ii

l
i ib yw xT +

1 1
( )* *

2
L b C y bp i i i i

T
i

l

i

l
i i i ii

l
( , - -Tw w w w x, , , , , , )* * * * * *               

  1
11 1
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0  i
* C i = 1, l,

0  i  C i = 1, l.

Note that a dual variables Lagrangian Ld(, *) is expressed in terms of 
LaGrange multipliers  and * only, and that - the size of the problem, 
with respect to the size of an SV classifier design task, is doubled now.    

There are 2l unknown multipliers for linear regression and the Hessian 
matrix H of the quadratic optimization problem in the case of regression
is a (2l, 2l) matrix. 

The standard quadratic optimization problem above can be expressed 
in a matrix notation and formulated as follows:
Maximize  Step 3 in a matrix form

Ld() = -0.5TH  + fT,

subject to constraints above where for a linear regression,

G = [xTx + 1], f = [ - y1  - y2, . . .,  - yN,  + y1,  + y2, . . . ,  + y2N].

 ii

l
ii

l* 
  1 1
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More interesting, common and challenging problem is to aim at
solving the nonlinear regression tasks. Here, similar as in the case of 
nonlinear classification, this will be achieved by considering a linear 
regression hyperplane in the so-called feature space.

Thus, we use the same basic idea in designing SV machines for
creating a nonlinear regression function. 

We map input vectors x   n into vectors z of a higher dimensional 
feature space F (z = (x) where  represents mapping:  n   f ) and 
we solve a linear regression problem in this feature space.

A mapping (x) is again chosen in advance. Such an approach again 
leads to solving a quadratic optimization problem with inequality 
constraints in a z-space. The solution for an regression hyperplane f = 
wTz(x) + b which is linear in a feature space F, will create a nonlinear 
regressing hypersurface in the original input space. In the case of 
nonlinear regression, after calculation of LaGrange multiplier vectors 
and *, we can find an optimal desired weight vector of the kernels 
expansion vo as   Step 4

vo = * -  ,
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and an optimal bias bo can be found from                                  .

where g = G vo and the matrix G is a corresponding design matrix of 
given RBF kernels.
Step 5
The best nonlinear regression hyperfunction is given by

z = f(x, v) = Gv + b.

There are a few learning parameters in constructing SV machines for 
regression. The two most relevant are the insensitivity zone e and the 
penalty parameter C that determines the trade-off between the training 
error and VC dimension of the model. Both parameters should be 
chosen by the user.

Generally, an increase in an insensitivity zone e has smoothing effects 
on modeling highly noisy polluted data. Increase in e means a reduction 
in requirements on the accuracy of approximation. It decreases the 
number of SVs leading to data compression too. See the next figures.
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The influence of a insensitivity zone e on modeling quality. A
nonlinear SVM creates a regression function with Gaussian kernels and 
models a highly polluted (25% noise) sinus function (dashed). 17
measured training data points (plus signs) are used. 

Left:    e = 0.1.    15 SV are chosen (encircled plus signs).
Right: e = 0.5.      6 chosen SV produced a much better   

regressing function.
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Some of the constructive problems:
The SV training works almost perfectly for not too large data basis. 
However, when the number of data points is large (say l > 2000) the QP 
problem becomes extremely difficult to solve with standard methods. For 
example, a training set of 50,000 examples amounts to a Hessian matrix H 
with 2.5*109 (2.5 billion) elements. Using an 8-byte floating-point 
representation we need 20,000 Megabytes = 20 Gigabytes of memory
(Osuna et al, 1997). This cannot be easily fit into memory of present standard 
computers. 
There are three, now classic, approaches that resolve the QP for large data sets. 
Vapnik in (Vapnik, 1995) proposed the chunking method that is the 
decomposition approach. Another decomposition approach is proposed in
(Osuna, Girosi, 1997). The sequential minimal optimization (Platt, 1997) 
algorithm is of different character (works with 2 data points at the time) and it 
seems to be an ‘error back propagation’ for a SVM learning. 

The newest iterative single data (per-pattern) algorithm (Kecman, Vogt, 
Huang, 2003; Huang, Kecman, 2004) seems to be the fastest for a huge data 
sets (say, for more than a few hundred thousands data pairs) at the moment! 146/160
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Let us conclude the presentation of SVMs by summarizing the basic 
constructive steps that lead to SV machine:

selection of the kernel function that determines the shape of 
the decision and regression function in classification and 
regression problems respectively,

selection of the ‘shape’, i.e., ‘smoothing’ parameter in the 
kernel function (for example, polynomial degree and variance 
of the Gaussian RBF for polynomials and RBF kernels 
respectively),

choice of the penalty factor C and selection of the desired 
accuracy by defining the insensitivity zone e,

solution of the QP problem in l and 2l variables in the case 
of classification and regression problems respectively.
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Let us conclude the part on a comparisons between the 
SVMs and NNs

both the NNs and SVMs learn from experimental data,

both the NNs and SVMs are universal approximators in the 
sense that they can approximate any function to any desired 
degree of accuracy,

after the learning they are given with the same 
mathematical model, as the sum of weighted basis (kernel) 
functions, and they can be presented graphically with the 
same so-called NN’s graph,

they differ by the learning method used. While NNs 
typically use either EBP (or some more sophisticated gradient 
descent algorithm) or some other linear algebra based 
approach, the SVMs learn by solving the QP or LP problem.
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Some additions
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I’ve been talking mostly about SVMs, but what 
are the alternatives?

Basic, the most popular and powerful, ones would be:
• The least squares classifiers, (Gauss and Legendre, ~ 200 

years ago, today FFT and JPEG are still using it),

• Linear discriminant analysis, LDA (R.A. Fisher, 1936), for 
multivariate normal distributions; it uses hyperplanes as 
decision functions. A generalization of  LDA is

• Quadratic discriminant analysis, which allows quadratic 
decision functions. Both methods are still used by many 
practitioners often with good success.

• k-nearest-neighbor, KNN, introduced in 1951; see Fox and 
Hodges (1951, 1952). Many followers. It’s still in heavy use. 
It was the first method for which universal consistency 
was established; see Stone (1977)
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• Cluster analysis is an UNsupervised approach to recognize clusters in 
unlabeled data. Check the books by Hartigan (1975) and Kaufman and 
Rousseau (2005) for an introduction to cluster analysis techniques. K-
means cluster analysis.

• Parametric logistic regression proposed by D. R. Cox to model binomial 
distributed outputs; see Cox and Snell (1989). This method is based on 
linear decision functions but does not make specific assumptions on the 
distribution of the inputs. Parametric logistic regression is a special case 
of generalized linear, see McCullagh and Nelder (1989). Hastie and 
Tibshirani (1990) proposed a semi-parametric generalization called 
generalized additive models where the inputs may influence the outputs in 
an additive but not necessarily linear manner. The lasso (Tibshirani, 1996) 
is a method for regularizing a least squares regression. It minimizes the 
usual sum of squared errors, with a bound on the sum of the absolute 
values of the coefficients.

• Other ‘classic’ methods for classification and regression are trees, 
Breiman et al. (1984). Trees often produce not only accurate results but 
are also able to uncover the predictive structure of the problem.

• Neural networks are non-linear statistical data modeling tools that can be 
used to model complex relationships between inputs and outputs or to find 
patterns in data sets. The motivation for neural networks, which were very 
popular in the 1990s, goes back to McCullogh and Pitts (1943) and 
Rosenblatt (1962). We refer also to Bishop (1996), Anthony and Bartlett 
(1999), and Vidyasagar (2002).
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• There also exist various other kernel-based methods. 
For wavelets, we refer to Daubechies (1991), and for 
splines to Wahba (1990). Recent developments for 
kernel-based methods in the context of SVMs are also 
described by Cristianini and Shawe-Taylor (2000), 
Schoelkopf and Smola (2002), and Shawe-Taylor and 
Cristianini (2004).

• Boosting algorithms are based on an adaptive 
aggregation to construct from a set of weak learners a 
strong learner; see Schapire (1990), Freund (1995), and 
Freund and Schapire (1997). Finally, the books by Hastie 
et al. (2001, 2009), Duda et al. (2001), and Bishop (2006) 
give a broad overview of various techniques used in 
statistical machine learning, whereas both Devroye et al. 
(1996) and Gyoerfi et al. (2002) treat several 
classification and regression methods in a 
mathematically more rigorous way.
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Now, some basics of a
Bias – Variance - Dilemma!

It is the must piece of the knowledge in 
order to get an idea of the relationship 
between the data, models and errors!

It will be intuitive, without math or any 
equation and it will serve for warming up! 
Check Kecman’s book (there are many 

others better and more specialized too) if 
you like math. 
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data

unknown 
dependency

our model

Training and Generalization
Today, having powerful computers and good math software it is easy to be ‘great and

perfect’ on the training data set!

However, such a ‘greatness’ pays heavy price at unseen data, i.e., in a 
generalization phase, or in use!!!

This is (deliberately chosen) extremely bad modeling, but real! 
The same or similar phenomena will be present in the high dimensional cases, too!

y = f(x) = 0

True y = f(x)

For this, during the training unseen, input x the model gives y = f(x) = 0

155/160

One more example showing the perfect training results, but very bad generalization ones.

Note that all three models have the training error equal zero! Bias = 0! Perfect interpolants!

-3 -2 -1 0 1 2 3
-1.5
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x

f(x)

Three different perfect interpolations of noise-free training data

xi

yi = f(xi)
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And, still one more example, but now from the PATTERN RECOGNITION 
(CLASSIFICATION) task, showing various models and their performances.

Note that the last model (learning machine) learns perfectly, i.e., separates all the training 
data.

Or, this one

Central solution is of an intermediate capacity, separating most of the points, 
without putting too much trust into any particular training data point!!!

On the left, the separation boundary is linear, and it misses not only the outliers, 
but some ‘easy’ points. The solution on the right does not miss anything. By 
having high capacity, it learns each data belongings ‘by heart’, but it is unlikely 
that it will perform well on the new data, say this one
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Obviously, we need much more
than being good (or even 

excellent) on the training data set!

This ‘more’ means, we want that 
our models perform well on all 
future, previously unseen data,

generated by the same data 
generator (i.e., plant, system, 

process, probability distribution).
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The whole statistical learning fights (optimizes) the following two curves!

Design parameters: e.g., order of polynomial, or the  
number of fuzzy rules, or the number of neurons

BIAS Curve VARIANCE Curve

Generalization Error Curve
Error

Optimal parameters zone

Although the graph looks very simple, finding the optimal modeling parameters is an 

EXTREMALY DIFFICULT task!!!

and, this is due to the following facts:

• we never (or, rarely only) know the underlying probability distribution, meaning the data 
generation, function,

• we never know the space of (target) functions, or to which class of functions our f. belongs

• we always have scarce (insufficient, not enough) data,

• our data are always high- (or/and extremely high-) dimensional,

• there is always the noise, or data are corrupted

This curve is 
a.k.a. an

EMPIRICAL 
RISK (error)

This curve is 
a.k.a. a

CONFIDENCE or 
Estimation error
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Bias & Variance
In modeling an unknown dependency (regression or discrimination 
function), without knowledge of its mathematical form (target space), our 
models (functions from hypothesis space) produce approximating 
functions, which may be incapable of representing the target function
behavior. 

A difference between the model output and 
unknown target function is called the bias.

When there are not sufficient data, (or even if there appears to be sufficient 
representative data, noise contamination can still contribute that) the sample 
of data that is available for training may not be representative of average
data generated by the target function.

Consequently, there may be a difference between a network output for a 
particular data set, and network function output for the average of all data 
sets produced by the target function. 

The square of this difference is called the variance.
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High Bias - Low Variance Low Bias - High Variance

Good model designer would try to get medium 
both the Bias and the Variance


